Cambridge暑研回忆录(2022.06—2022.10)

Cambridge暑研回忆录(2022.06—2022.10)

一个背景

10月21号正式提交Final Report后,就进入了大三以来最舒服的一个周末。而过去三个月来暑研的困难程度,和我6月份报名投递申请时所想象的完全不同。

整体上来看,CCISTC暑研(下称Camb暑研)大体分为四个部分:

  1. Academic Practical (10学时,基本的科研学术技能,机器学习入门)
  2. Workshop(12学时,可以理解为工具课:雅思英语,留学规划,学术网站)
  3. AI Lecture(6学时,所谓的正课,但我其实没听懂多少,这个后面会讲到…)
  4. Research Project(暑研课题,大约花费了300-320小时?巨累…)

而Camb暑研最后的考评/推荐信是根据以下三个部分:

  1. 暑研课程出勤(10%,大家都差不多,甚至请假还可以豁免,这个不提)
  2. Research Proposal(45%,单写作花了5天时间)
  3. Final Report(45%,单写作花了2周时间)

关于暑研

就针对暑研来说,线下的体验绝对是好过online的,但迫于疫情(担心新学期,学校不给进,隔离周期太长),还有就是菜(没错就是菜,大二无paper弱鸡根本申不到实地)所以选择了这次的Camb线上项目。

从今年6月确定收到offer开始,到正式出成绩单(预计11月中旬),完整的流程大概是持续了5个月。如果再算上这次的final report改成paper投递的话,可能就要再持续半年左右?

说回来暑研本身,导师 Pietro Lio’ 是意大利人,在剑桥拿到了MA,然后回意大利攻了两个PhD学位——Systems Dynamics & Theoretical Genetics——而现在主要是做图神经网络和计算生物学,这看起来巨神奇的履历…确实是见识了一番大牛的时间管理水平。

但就像同AI项目的朋友在知乎上吐槽的,教授的英文口语确实是一言难尽——三节AI正课几乎是靠意志力撑着——虽然一方面确实是口音的问题;但更多的是ML(Machine Learning)经历的欠缺。连Python基础都是在今年6-8月补起来的我,居然在未来的三个月搞了一个ML-Based的大项目,中间的水份真是一言难尽呐…

但总之,这次暑研的最大收获——至少在DDL的push下,确实做了深入的review,最后提交的报告也能让自己心满意足了,具体细节可以看这里

还要提到,暑研的Supervisor是Lio’教授的二年级博士生,我们叫他Jerry学长——Jerry是BUPT的本科,然后在Sheffield读了一年MSc(with distinction),然后PhD阶段来到了剑桥做Wireless+ML

Jerry给我们上Practical(讲学术技能和ML入门),以及Supervision(项目辅导,给我们的课题进展提供建议)两门课。豪不夸张地说,这次暑研的质量与体验感,很大程度上都是靠Jerry一个人撑起来的…


其他的故事

暑研的同期,把大二下学期搞的那篇IoT-System的文章给投了,最后稀里糊涂的中了个IEEE CENIM(某亚洲水会…但确实是没有想到会这么顺利)

因为后来reviewer修改意见下来之后,在10月中旬和导师又一起认真改了一轮,发现投上去的那个版本的语言真的是巨烂啊…当然那一版写得拧巴,确实因为不是我主笔的好吧…哈哈

总之这篇能一投即中,算是一个意料之外的收获吧,具体细节可以看这里

而回过头来,这次Camb暑研的经历,也让我暂时是坚定了未来攻PhD的念头,感到自己确实对这个领域是有点激情和想法(or天赋?)的,与此同时,受暑研搭档(wyc, chx…)的启发,也让我开始更多地关注海外机会——也即后来的Canada Mitacs项目,这个之后会再详谈。


关于暑研做的东西

最后还是想简单总结一下这次暑研做的东西:RIGMS Testbed for IoT Cybersecurity Using Machine Learning Based Approach

整体思路很大程度上参考了这篇:SCADA System Testbed for Cybersecurity Research Using Machine Learning Approach,连标题都是模仿它的好吧…这个系列作者的工作很有意思,对于想入门IoT+Security方向的,他们的工作必看

anyway,我们的工作是依照之前实现的IoT-System进行魔改,目的是把这个现成的System整合成一个Physical Testbed,然后对其实施随机安全攻击(Cyber-attacks,通过现成的工具实施攻击,抓包也是现成的工具)

进一步,在攻击过程中,捕捉Traffic Activities,提取Traffic Features,最后总结分析Data Analysis,并汇总成一个独立的RIGMS-Datasets,用于后续的训练工作;

再来,我们选用了5个不同类型的ML模型来进行训练、测试,大体上达到了合适的效果(并保留了改进空间,你懂的哈哈)最后,附上Abstract…逃

This paper proposes a real-time intelligent garbage monitoring system (RIGMS) testbed for IoT cybersecurity research. The testbed is established by realistic devices in the physical world, which is a stage in the process of municipal waste disposal. Multiple-mix-attacks were conducted based on the testbed. During the attack scenarios, the network activities were analyzed, and the traffic features were extracted to design a representative RIGMS dataset for training and verifying the authenticity of the machine learning based models. In this paper, five advanced ML models were utilized to detect the cyber-attacks. Experiment results verified the feasibility of implementing learning based models to detect multiple-mix-attacks.

然后上图:

截屏2022-10-29-22.13.29

图1—Multiple-mix-attacks原理

截屏2022-10-30-09.25.00

图3—Testbed的主要框架

截屏2022-10-29-22.13.12

图5—训练测试的flow-chart

截屏2022-10-30-09.24.10

表9—最终跑出来的效果(by lyc)

截屏2022-10-30-09.24.25

图6—Matlab画的Acc对比图,DDL最后一天下午现学现画的…这里强推图通道

以上是几张我觉得最舒服的图片(不过会有人关注这个嘛,哈哈…)


写在最后

Research of IoT已然是一片红海,和IR/VR、无人机,甚至是今年的元宇宙都很像。突然概念爆火,然后一堆人蜂拥而入。

在每年产出数万篇的论文里,可能不到3000篇值得看(要锤别人先锤自己,包括我们的上一篇,可以自定义为‘学术楽色’)。而在这3000篇值得review的文章里头,能进一步,值得深入分析,甚至复现的,可能就不到200篇了?且看且珍惜吧…

另外,这几天水知乎看到这么个题目:# 如何看待广西自治区政府奖学金评审,广西大学推荐人选跨专业取得多项成果和发明专利,大学生真有这么厉害吗?

均分不到70,却有40+个项目…各种专利、软著(经查大部分都是并未得到授权的,反正都稀里糊涂填上去)——然后,这样的履历真的漂亮吗?评选出这样履历的学校们,真的光彩吗?

分享我在这个话题下的回答:

“脚踏实地,脚踏实地啊,学弟学妹们”

人生是要跨越100级台阶的,而这第1、2、3级台阶走得多快,对于人生的整体而言,无足轻重。要明白,走得快并不代表走得远。

进一步,有一步的欢喜。

本科生进实验室,发paper,绝对是利大于弊的,即使是所谓的‘灌水’——毕竟丘先生说过,“绝大部分的数学论文都是…”——从这点出发,有Paper至少能证明你科研的能力、激情与基本素养…

但是,绝不要提倡为了卷而卷的本科生科研,不要涌入一切为了刷简历的囹圄当中”

在FZU-MIEC的三年,我见过太多一心为了刷履历、卷综测,最后落得身败名裂,两头空的家伙——读者朋友们,请一定不要如此呀。

“人生,是要跨越一百级台阶的。”


关于展望

上文提到了Canada Mitacs项目,是关于明年,也就是2023年的暑研。

9月份投递了报名申请,马上11月要开始第一轮匹配面试,12月出入选结果;如果顺利的话,明年应该6月-10月这段时间就会在加拿大做一段Summer Research (Offline)

之后还会详细地对这次Mitacs的申请、面试以及过程(如果顺利的话),写一篇回忆录。总之,祝自己好运吧。

期待2023年夏天,Waterloo见!

Camb线上暑研回忆录

2022.06—2022.10

by Lance Cai

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Cambridge公司是一家领先的无线局域网技术公司,致力于下一代的无线局域网(WLAN)技术发展。他们的重点研究方向主要包括802.11n和802.11ac两种新一代无线局域网标准。 802.11n是在传统的802.11a/b/g标准基础上进一步发展的一种无线局域网标准。它用于提高无线传输速度和覆盖范围,并减少信号干扰。802.11n采用了多载波传输技术(MIMO),通过同时使用多个天线和数据流,使数据传输速率大大提高。此外,它还增加了通道绑定和聚集机制,进一步提高了无线网络的性能。 而802.11ac是在前一代标准基础上的进一步创新。它采用了更高的频率范围和更宽的信道带宽,为用户提供了更高速的无线传输体验。802.11ac通过增加多个天线和更好的编码机制,进一步提高了无线网络的传输速率,使得用户可以更快地下载和上传数据。此外,它还采用了增强的空间复用技术,可在高密度网络环境下保持更稳定的连接。 Cambridge公司在研究和开发方面投入了大量资源,致力于优化这两种技术的性能和可靠性。他们通过改进调制解调器、天线设计和信号处理算法等关键要素,来提高数据传输速度和信号强度。此外,他们还通过与其他无线设备的兼容性测试,确保这些新技术可以无缝集成到现有的无线网络中。 综上所述,Cambridge公司在下一代无线局域网技术方面的研究和创新,使得802.11n和802.11ac等标准成为实现更快速和可靠的无线通信的重要推动力。这些技术的进步将进一步提升用户的体验,并推动无线网络的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蔡汉霖Lance

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值