从建模到优化:COMSOL多孔介质电化学仿真AI融合实战》

电池技术作为能源领域的关键支撑,正面临着多学科交叉融合带来的重大变革与严峻挑战。传统建模手段在处理电池系统内部复杂多变的多物理场耦合问题时暴露出诸多局限。例如,电池热管理仅依靠传热学理论难以精确描述其复杂热行为,电极材料的力学稳定性分析也离不开电化学与力学的交叉探讨。与此同时,人工智能(AI)技术正加速渗透到电池研发各环节,从电池性能预测到寿命评估,从结构优化到充电策略制定,AI 凭借其强大的数据挖掘与分析能力,正重塑电池技术的研发范式。国际趋势方面,Nature、JES 等顶尖学术期刊持续聚焦“多物理场耦合”、“AI+电池”等交叉研究前沿,COMSOL 与 AI 技术融合驱动的电池建模与仿真创新研究正成为全球热点。由知名学者领衔的科研团队不断在多物理场耦合机理剖析、智能化电池管理系统开发等方面取得突破性成果,推动着电池技术向更高能量密度、更长循环寿命、更高安全性等目标加速迈进。国家需求层面,我国《“十四五”能源领域科技创新规划》明确提出聚焦新一代信息技术和能源融合发展,开展能源领域用数字化、智能化共性关键技术研究,并提出加速能源科技创新人才培养保障措施。学科发展维度,智能电池技术作为新兴交叉学科领域正蓬勃兴起,众多头部企业对既精通电池电化学核心技术,又熟练掌握多物理场仿真技巧与 AI 应用开发的复合型人才求贤若渴,相关岗位招聘需求持续井喷。
在这里插入图片描述
阶篇:
多孔介质力学与COMSOL应用

  1. 多孔介质力学基本理论
    (1) 多孔介质内部流动与变形耦合(流固耦合渗流/孔隙弹性理论.(2) 多孔介质热流固耦合分析
  2. COMSOL中多孔介质耦合模型建模方法(1) 多孔介质模型(多孔介质模块)的建模(2) 多孔介质内部多物理场耦合模型的建模、
  3. 多孔介质在能源和资源领域中的应用(1) 多孔介质在强化传热中的应用(热流耦合)(2) 多孔介质在地热开采/CCUS等问题(热流固耦合)中的应用
  4. 多孔介质力学仿真基础实操(1) COMSOL多孔介质模块的使用(2) 流固耦合案例分析5. 多孔介质多场耦合仿真实操(1) 热流耦合案例分析(2) 热流固耦合案例分析
    在这里插入图片描述
    高阶篇:
    人工智能与COMSOL联合仿真优化
    人工智能与机器学习基础(1) 人工智能、传统机器学习、深度机器学习的基本概念(2) 机器学习算法简介
  5. COMSOL与人工智能的结合方法(1) COMSOL仿真数据的导出与处理(2) 数据的预处理与特征提取(3) 数据的机器学习、模型训练和验证
    1. COMSOL与PyCharm软件(Python)的结合使用实操(1) 通过COMSOL进行后处理,并导出数据(2) 训练神经网络模型,并进行验证
    1. 基于COMSOL仿真数据与人工智能的电池性能预测案例实操 (1) 利用PyCharm对COMSOL导出数据进行可视化分析 (2) 训练神经网络模型,并进行验证
    1. 锂电池设计(结构和参数)优化案例实操(1) 对COMSOL导出数据进行预处理,并训练机器学习代理模型和验证(2) 通过优化算法和代理模型进行优化设计
      腾讯会议查阅
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值