06-02
枚举
开关
题目描述
一排有N盏灯。事先给定每盏灯的初始状态(开着或关着),你的任务是计算出至少要切换多少盏灯的状态(把开着的关掉,或把关着的打开),使得这N盏灯交替地打开和关闭。
输入
输入文件中有多组测试数据,每行一组。首先是一个整数N(1<=N<=10000)表示灯的个数。然后是N个整数,表示这N盏灯的状态(1表示打开,0表示关闭)。测试数据直到文件尾。
输出
对每组测试数据输出一个至少需要切换的灯的数目,占一行。
Sample Input
9 1 0 0 1 1 1 0 1 0
3 1 0 1
Sample Output
3
0
写的代码太笨了@#@,其实只需要两者情况,一个是改变第一个开关,求解切换的数目,另外一个是从第一个需要切换的开关开始求解切换数@##@
在写的时候也犯了许多小错误,数组赋值不能直接写a=b,
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int a[10005],b[10005];
int check(int n){
int i,flag=0;
for(i=0;i<n-1;i++){
if(a[i]==a[i+1]) {
flag=i+1;
break;
}
}
return flag;
}
void renew(int n){
int i;
for(i=0;i<n;i++) b[i]=a[i];
}
int main()
{
int n,i;
while(scanf("%d",&n)!=EOF){
for(i=0;i<n;i++){
scanf("%d",&a[i]);
}
renew(n);
int j;
int count=0,min=10000;
for(i=0;i<=check(n);i++){
if(check(n)==0){
min=0;
break;
}
for(j=i;j<n;j++){
if(j==0) {
b[j]=abs(b[j]-1);
count++;
continue;
}
if(b[j]==b[j-1]) {
b[j]=abs(b[j]-1);
count++;
}
}
if(count <= min) min = count;
count=0;
//b=a;
renew(n);
}
printf("%d\n",min);
min=10000;
}
return 0;
}
数字方格
题目描述
图8.1 整数序列
如图8.1所示,有3个方格,每个方格里面都有一个整数a1,a2,a3。已知0 <= a1, a2, a3 <= n,而且a1 + a2是2的倍数,a2 + a3是3的倍数, a1 + a2 + a3是5的倍数。你的任务是找到一组a1,a2,a3,使得a1 + a2 + a3最大。
输入
输入的第一行是一个数t,表示测试数据的数目。接下来的t行,每行给出一个n (0 <= n <= 100)的值。
输出
对于每一个n的值,输出a1 + a2 + a3的最大值。
Sample Input
2
0
3
Sample Output
0
5
#include<stdio.h>
int main()
{
int n,t;
int a[105];
int i,j,k;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(i=0;i<=n;i++){
a[i]=i;
}
int max=0;
//if(n==0) max=0;
for(i=0;i<=n;i++){
for(j=0;j<=n;j++){
for(k=0;k<=n;k++){
if((a[i]+a[j])%2!=0 || (a[j]+a[k])%3!=0 || (a[i]+a[j]+a[k])%5!=0) continue;
else{
if(max<=a[i]+a[j]+a[k]) max=a[i]+a[j]+a[k];
}
}
}
}
printf("%d\n",max);
}
return 0;
}
06-04
哥德巴赫猜想之一
哥德巴赫(Goldbach C.),出生于1690年3月18日,德国数学家;出生于格奥尼格斯别尔格(现名加里宁城)。曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年到俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年移居莫斯科,并在俄国外交部任职。
1742年,哥德巴赫提出了著名的哥德巴赫猜想,任何一个不小于6的偶数都可以表示为两个素数之和。
要求编程实现将一个不小于6的偶数分解成2个素数之和,并输出所有的分解形式。例如34有4种分解形式:
34=3+31
34=5+29
34=11+23
34=17+17
输入
输入包括多组测试数据,每行为一个不小于6的偶数。
输出
求出对应的素数,并按照从小到大的顺序输出所有的分解形式,具体格式见输出样例。
Smaple Input
6
34
Sample Output
6 = 3 + 3
34 = 3 + 31
34 = 5 + 29
34 = 11 + 23
34 = 17 + 17
个人思路比较简单:首先设置一个函数来判断一个值是否是函数,再用一个数字将其存起来,之后通过双重循环来寻找答案
**在写代码的时候,出现了一些不必要的错误@#@,并且在编译报错的时候,还并不知道显示error的意思,查了查之后才有一点了解 #.#
control reaches end of non-void function
没有写返回值,或者返回值写错了位置#…#
expected declaration or statement at end of input
括号数不对造成的
#include<stdio.h>
#include<math.h>
int judge(int n){
int i,flag=1;
for(i=2;i<=sqrt((double)n);i++){
if(n%i==0) {
flag=0;
break;
}
}
return flag;
}
int main()
{
//int judge(int n);
int a,b,c;
while(scanf("%d",&a)!=EOF){
int num[100005]={0};
int i,j=0;
for(i=2;i<a;i++){
if(judge(i)){
num[j++]=i;
}
}
int count=j;
for(i=0;i<=count;i++){
for(j=i;j<=count;j++){
b=num[i];c=num[j];
if(a == b+c){
printf("%d = %d + %d\n",a,b,c);
}
}
}
printf("\n");
}
return 0;
}
自我数
题目描述
1949年,印度数学家D.R.Kaprekar发现了一类叫做自我数(Self Numbers)的数。对于任一正整数n,定义d(n)为n加上n的每一位数字得到的总和。
例如,d(75)=75+7+5=87
取任意正整数n作为出发点,你可以建立一个无穷的正整数序列n,d(n),d(d(n)),d(d(d(n))),…。
例如,如果你从33开始,下一个数字就是33+3+3=39,再下一个是39+3+9=51,再下一个是51+5+1=57,…。如此变产生一个整数数列:
33,39,51,69,84,96,111,114,120,123,129,141,……
数字n被叫做整数d(n)的生成器。在如上的数列中,33是39的生成器,39是51的生成器,51是57的生成器,等等。
有些数字有多于一个生成器,如101有2个生成器,91和100.而一个没有生成器的数字则称作自我数(Self Numbers)。100以内的自我数共有13个:1,3,5,7,9,20,31,42,53,64,75,86和97。
输入
此题无输入
输出
输出所有小于或等于10000的正的自我数,以升序排列,并且每个数占一行。
Sample Input
此题无输入
Sample Output
1
3
5
7
9
…<-这里有许多自我数
9949
9960
…
思路很简单,就是先从1开始计算,将不是自我数的值用数组标记,最后遍历数组,输出自我数
但是需要注意数组的范围,需要设置较大一点,比如9999计算的结果为10036,如果设置10005,结果不会输出
最开始自己也不知道为什么没有输出结果,后来例举了几个数才发现@#@…
直接求解:
#include<stdio.h>
#include<string.h>
int main()
{
int i;
int num[11000]={0};
int temp;
for(i=1;i<=10000;i++){
if(i>=1&&i<10) num[i+i]=1;
if(i>=10&&i<100) num[i+i%10+i/10]=1;
if(i>=100&&i<1000) num[i+i%10+(i%100)/10+i/100]=1;
if(i>=1000&&i<10000) num[i+i%10+(i%100)/10+(i%1000)/100+i/1000]=1;
//temp=i+sum(i);
//num[temp]=1;
}
for(i=1;i<=10000;i++){
if(num[i]==0)
printf("%d\n",i);
}
return 0;
}
使用函数:
#include<stdio.h>
#include<string.h>
int sum(int n){
int c,s=0;
while(n){
c=n%10;
s+=c;
n=n/10;
}
return s;
}
int main()
{
int i;
int num[11000]={0};
int temp;
for(i=1;i<=10000;i++){
temp=i+sum(i);
num[temp]=1;
}
for(i=1;i<=10000;i++){
if(num[i]==0)
printf("%d\n",i);
}
return 0;
}
积木
题目描述
Donald想给他的小侄子送礼物。Donald是一个传统的人,他给他的小侄子选择了一套积木。这套积木共N个,每个积木都是一个立方体,长宽高都是1英寸。Donald想把这些积木放到一个长方体里,用牛皮纸包装起来托运,请问,Donald至少需要多大的牛皮纸?
输入
输入文件的第1行为一个整数C,代表测试数据的数目。每个测试数据占一行,为一个正整数N,表示需要包装的积木数目,N不超过1000.
输出
对每个测试数据,输出占一行,为包装这N个积木需要牛皮纸的最小面积,单位为平方英寸。
Sample Input
3
9
26
100
Sample Output
30
82
130
首先,想要面积最小,包装的积木应该为规则的长方体,所以本菜直接从1开始例举长,宽,高,求解符合的值
注意,如果使用三重循环会超时!
#include<stdio.h>
int main()
{
int a,b,c,s;
int n;
scanf("%d",&n);
while(n--){
int area=100000;
scanf("%d",&s);
for(a=1;a<=s;a++){
for(b=1;b<=s;b++){
if(s%(a*b)!=0) continue;
else c=s/(a*b);
if(area>2*(a*b+a*c+b*c)){
area=2*(a*b+a*c+b*c);
}
}
}
printf("%d\n",area);
area=100000;
}
return 0;
}