开关&数字方格&哥德巴赫猜想&自我数&积木

06-02

枚举

开关

题目描述

一排有N盏灯。事先给定每盏灯的初始状态(开着或关着),你的任务是计算出至少要切换多少盏灯的状态(把开着的关掉,或把关着的打开),使得这N盏灯交替地打开和关闭。

输入

输入文件中有多组测试数据,每行一组。首先是一个整数N(1<=N<=10000)表示灯的个数。然后是N个整数,表示这N盏灯的状态(1表示打开,0表示关闭)。测试数据直到文件尾。

输出

对每组测试数据输出一个至少需要切换的灯的数目,占一行。

Sample Input

9 1 0 0 1 1 1 0 1 0
3 1 0 1

Sample Output

3
0

写的代码太笨了@#@,其实只需要两者情况,一个是改变第一个开关,求解切换的数目,另外一个是从第一个需要切换的开关开始求解切换数@##@

在写的时候也犯了许多小错误,数组赋值不能直接写a=b,

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int a[10005],b[10005];

int check(int n){
    int i,flag=0;
    for(i=0;i<n-1;i++){
        if(a[i]==a[i+1]) {
            flag=i+1;
            break;
        }
    }
    return flag;
}

void renew(int n){
    int i;
    for(i=0;i<n;i++) b[i]=a[i];
}
int main()
{
    int n,i;
    while(scanf("%d",&n)!=EOF){
    for(i=0;i<n;i++){
        scanf("%d",&a[i]);
    }
    renew(n);
    int j;
    int count=0,min=10000;
    for(i=0;i<=check(n);i++){
        if(check(n)==0){
            min=0;
            break;
        }
        for(j=i;j<n;j++){
            if(j==0) {
                b[j]=abs(b[j]-1);
                count++;
                continue;
            }
            if(b[j]==b[j-1]) {
                b[j]=abs(b[j]-1);
                count++;
            }
        }
        if(count <= min) min = count;
        count=0;
        //b=a;
        renew(n);
    }
    printf("%d\n",min);
    min=10000;
    }
    return 0;
}

数字方格

题目描述

图8.1 整数序列
如图8.1所示,有3个方格,每个方格里面都有一个整数a1,a2,a3。已知0 <= a1, a2, a3 <= n,而且a1 + a2是2的倍数,a2 + a3是3的倍数, a1 + a2 + a3是5的倍数。你的任务是找到一组a1,a2,a3,使得a1 + a2 + a3最大。

输入

输入的第一行是一个数t,表示测试数据的数目。接下来的t行,每行给出一个n (0 <= n <= 100)的值。

输出

对于每一个n的值,输出a1 + a2 + a3的最大值。

Sample Input

2
0
3

Sample Output

0
5

#include<stdio.h>

int main()
{
    int n,t;
    int a[105];
    int i,j,k;
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        for(i=0;i<=n;i++){
            a[i]=i;
        }
        int max=0;
        //if(n==0) max=0;
        for(i=0;i<=n;i++){
            for(j=0;j<=n;j++){
                for(k=0;k<=n;k++){
                    if((a[i]+a[j])%2!=0 || (a[j]+a[k])%3!=0 || (a[i]+a[j]+a[k])%5!=0) continue;
                    else{
                        if(max<=a[i]+a[j]+a[k]) max=a[i]+a[j]+a[k];
                    }
                }
            }
        }
        printf("%d\n",max);
    }
    return 0;
}


06-04

哥德巴赫猜想之一

哥德巴赫(Goldbach C.),出生于1690年3月18日,德国数学家;出生于格奥尼格斯别尔格(现名加里宁城)。曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年到俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年移居莫斯科,并在俄国外交部任职。
1742年,哥德巴赫提出了著名的哥德巴赫猜想,任何一个不小于6的偶数都可以表示为两个素数之和。
要求编程实现将一个不小于6的偶数分解成2个素数之和,并输出所有的分解形式。例如34有4种分解形式:
34=3+31
34=5+29
34=11+23
34=17+17

输入

输入包括多组测试数据,每行为一个不小于6的偶数。

输出

求出对应的素数,并按照从小到大的顺序输出所有的分解形式,具体格式见输出样例。

Smaple Input

6
34

Sample Output

6 = 3 + 3


34 = 3 + 31
34 = 5 + 29
34 = 11 + 23
34 = 17 + 17



个人思路比较简单:首先设置一个函数来判断一个值是否是函数,再用一个数字将其存起来,之后通过双重循环来寻找答案

**在写代码的时候,出现了一些不必要的错误@#@,并且在编译报错的时候,还并不知道显示error的意思,查了查之后才有一点了解 #.#

control reaches end of non-void function

没有写返回值,或者返回值写错了位置#…#

expected declaration or statement at end of input

括号数不对造成的



#include<stdio.h>
#include<math.h>

int judge(int n){
    int i,flag=1;
    for(i=2;i<=sqrt((double)n);i++){
        if(n%i==0) {
            flag=0;
            break;
    }
    }
return flag;
}

int main()
{
    //int judge(int n);
    int a,b,c;
    while(scanf("%d",&a)!=EOF){
        int num[100005]={0};
        int i,j=0;
        for(i=2;i<a;i++){
            if(judge(i)){
                num[j++]=i;
            }
        }
        int count=j;
        for(i=0;i<=count;i++){
            for(j=i;j<=count;j++){
                b=num[i];c=num[j];
                if(a == b+c){
                    printf("%d = %d + %d\n",a,b,c);
                }
            }
        }
        printf("\n");
    }
    return 0;
}

自我数

题目描述

1949年,印度数学家D.R.Kaprekar发现了一类叫做自我数(Self Numbers)的数。对于任一正整数n,定义d(n)为n加上n的每一位数字得到的总和。
例如,d(75)=75+7+5=87
取任意正整数n作为出发点,你可以建立一个无穷的正整数序列n,d(n),d(d(n)),d(d(d(n))),…。
例如,如果你从33开始,下一个数字就是33+3+3=39,再下一个是39+3+9=51,再下一个是51+5+1=57,…。如此变产生一个整数数列:
33,39,51,69,84,96,111,114,120,123,129,141,……
数字n被叫做整数d(n)的生成器。在如上的数列中,33是39的生成器,39是51的生成器,51是57的生成器,等等。
有些数字有多于一个生成器,如101有2个生成器,91和100.而一个没有生成器的数字则称作自我数(Self Numbers)。100以内的自我数共有13个:1,3,5,7,9,20,31,42,53,64,75,86和97。

输入

此题无输入

输出

输出所有小于或等于10000的正的自我数,以升序排列,并且每个数占一行。

Sample Input

此题无输入

Sample Output

1
3
5
7
9
…<-这里有许多自我数
9949
9960



思路很简单,就是先从1开始计算,将不是自我数的值用数组标记,最后遍历数组,输出自我数

但是需要注意数组的范围,需要设置较大一点,比如9999计算的结果为10036,如果设置10005,结果不会输出
最开始自己也不知道为什么没有输出结果,后来例举了几个数才发现@#@…



直接求解:

#include<stdio.h>
#include<string.h>


int main()
{
    int i;
    int num[11000]={0};
    int temp;
    for(i=1;i<=10000;i++){
        if(i>=1&&i<10) num[i+i]=1;
        if(i>=10&&i<100) num[i+i%10+i/10]=1;
        if(i>=100&&i<1000) num[i+i%10+(i%100)/10+i/100]=1;
        if(i>=1000&&i<10000) num[i+i%10+(i%100)/10+(i%1000)/100+i/1000]=1;
        //temp=i+sum(i);
        //num[temp]=1;
    }
    for(i=1;i<=10000;i++){
        if(num[i]==0)
            printf("%d\n",i);
    }

    return 0;

}

使用函数:

#include<stdio.h>
#include<string.h>

int sum(int n){
    int c,s=0;
    while(n){
        c=n%10;
        s+=c;
        n=n/10;
    }
    return s;
}
int main()
{
    int i;
    int num[11000]={0};
    int temp;
    for(i=1;i<=10000;i++){
        temp=i+sum(i);
        num[temp]=1;
    }
    for(i=1;i<=10000;i++){
        if(num[i]==0)
            printf("%d\n",i);
    }

    return 0;

}


积木

题目描述

Donald想给他的小侄子送礼物。Donald是一个传统的人,他给他的小侄子选择了一套积木。这套积木共N个,每个积木都是一个立方体,长宽高都是1英寸。Donald想把这些积木放到一个长方体里,用牛皮纸包装起来托运,请问,Donald至少需要多大的牛皮纸?

输入

输入文件的第1行为一个整数C,代表测试数据的数目。每个测试数据占一行,为一个正整数N,表示需要包装的积木数目,N不超过1000.

输出

对每个测试数据,输出占一行,为包装这N个积木需要牛皮纸的最小面积,单位为平方英寸。

Sample Input

3
9
26
100

Sample Output

30
82
130

首先,想要面积最小,包装的积木应该为规则的长方体,所以本菜直接从1开始例举长,宽,高,求解符合的值
注意,如果使用三重循环会超时!



#include<stdio.h>

int main()
{
    int a,b,c,s;
    int n;
    scanf("%d",&n);
    while(n--){
        int area=100000;
        scanf("%d",&s);
        for(a=1;a<=s;a++){
            for(b=1;b<=s;b++){
                if(s%(a*b)!=0) continue;
                else c=s/(a*b);
                if(area>2*(a*b+a*c+b*c)){
                    area=2*(a*b+a*c+b*c);
                }

                }
            }
        printf("%d\n",area);
        area=100000;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值