有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int f[N][N];
int w[N],v[N];
int n,m;
int main()
{
cin >> n >> m;
for (int i = 1 ; i <= n ; i ++) cin >> v[i] >> w[i];
for (int i = 1 ; i <= n ; i ++)
for (int j = 0 ; j <= m ; j ++ )
{
f[i][j] = f[i - 1][j];
if (j >=v[i])
{
f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
}
}
cout << f[n][m] << endl;
return 0;
}
通过上面方法可以求出求优解,但不知道这个最优解由哪些物品组成,故要根据最优解回溯找到解的组成
另开一个x[]数组,x[i] = 0表示不拿第i个物品;x[i] = 1表示拿第i个物品
①f[i][j]==f[i - 1][j]时,说明没有选择第i个物品,则回到f[i-1][j],x[i]=0
②f[i][j] == f[i- 1][j - v[i]] + w[i]时,说明选择了第i个物品,则回到f[i - 1][j - v[i]] ,x[i] = 1
③一直遍历到i等于0为止,所有解的组成都会找到
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int f[N][N];
int w[N],v[N];
int n,m;
int x[N];
void print(int i , int j)
{
if (i >= 0)
{
if (f[i][j] == f[i - 1][j])
{
x[i] = 0 ;
print(i - 1 , j);
}
else if (j >= v[i] && f[i][j] == f[i - 1][j - v[i] ]+ w[i])
{
x[i] = 1;
print(i - 1, j - v[i]);
}
}
}
int main()
{
cin >> n >> m;
for (int i = 1 ; i <= n ; i ++) cin >> v[i] >> w[i];
for (int i = 1 ; i <= n ; i ++)
for (int j = 0 ; j <= m ; j ++ )
{
f[i][j] = f[i - 1][j];
if (j >=v[i])
{
f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
}
}
cout << f[n][m] << endl;
print(n, m);
for (int i = 1 ; i <= n ; i ++) cout << x[i] << ' ';
return 0;
}
另一种回溯方法
#include <iostream>
using namespace std;
const int N = 1010;
int w[N],v[N];
int f[N][N];
int n,m;
int x[N][N];
void print()
{
int i = n , j = m;
while (i > 0)
{
cout << "物品" << i << "选了" << x[i][j] <<"件" << endl;
j -=x[i][j] * v[i];
i --;
}
}
int main()
{
cin >> n >> m;
for (int i = 1 ; i <= n ; i ++) cin >> v[i] >> w[i];
for (int i = 1 ; i <= n ; i ++)
for (int j = 0 ; j <= m ; j ++)
{
f[i][j] = f[i - 1][j];
if (j >= v[i])
{
if (f [i][j] < f[i - 1][j - v[i]] +w[i])
{
f[i][j] = f[i - 1][j - v[i]] +w[i];
x[i][j] = 1;
}
}
}
cout << f[n][m] << endl;
print();
return 0;
}