01背包问题

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;
const int N = 1010;
int f[N][N];
int w[N],v[N];
int n,m;
int main()
{
    cin >> n >> m;
    for (int i = 1 ; i <= n ; i ++)  cin >> v[i] >> w[i];
    
    for (int i = 1 ; i <= n ; i ++)
       for (int j = 0 ; j <= m ; j ++ )
       {
           f[i][j] = f[i - 1][j];
           if (j >=v[i])
           {
               f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
           }
       }
    cout << f[n][m] << endl;
    return 0;
    
}

通过上面方法可以求出求优解,但不知道这个最优解由哪些物品组成,故要根据最优解回溯找到解的组成

另开一个x[]数组,x[i] = 0表示不拿第i个物品;x[i] = 1表示拿第i个物品

①f[i][j]==f[i - 1][j]时,说明没有选择第i个物品,则回到f[i-1][j],x[i]=0
②f[i][j] == f[i- 1][j - v[i]] + w[i]时,说明选择了第i个物品,则回到f[i - 1][j - v[i]] ,x[i] = 1
③一直遍历到i等于0为止,所有解的组成都会找到

#include <iostream>
#include <algorithm>

using namespace std;
const int N = 1010;
int f[N][N];
int w[N],v[N];
int n,m;
int x[N];
void print(int i , int j)
{
   if (i >= 0)
   {
       if (f[i][j] == f[i - 1][j])
       {
           x[i] = 0 ;
           print(i - 1 , j);
       }
       else if (j >= v[i] && f[i][j] == f[i - 1][j - v[i] ]+ w[i])
       {
           x[i] = 1;
           print(i - 1, j - v[i]);
       }
   }
}
int main()
{
    cin >> n >> m;
    for (int i = 1 ; i <= n ; i ++)  cin >> v[i] >> w[i];
    
    for (int i = 1 ; i <= n ; i ++)
       for (int j = 0 ; j <= m ; j ++ )
       {
           f[i][j] = f[i - 1][j];
           if (j >=v[i])
           {
               f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
           }
       }
    cout << f[n][m] << endl;
    
    print(n, m);
    for (int i = 1 ; i <= n ; i ++)  cout << x[i] << ' ';
    
    return 0;
    
}

另一种回溯方法

#include <iostream>
using namespace std;
const int N = 1010;
int w[N],v[N];
int f[N][N];
int n,m;
int x[N][N];
void print()
{
    int i = n , j = m;
    while (i > 0)
    {
        cout << "物品" << i << "选了" << x[i][j] <<"件" << endl;
        j -=x[i][j] * v[i];
        i --;
    }
}
int main()
{
    cin >> n >> m;
    for (int i = 1 ; i <= n ; i ++)  cin >> v[i] >> w[i];
    
    for (int i = 1 ; i <= n ; i ++)
      for (int j = 0 ; j <= m ; j ++)
      {
          f[i][j] = f[i - 1][j];
          if (j >= v[i])
          {
              if (f [i][j] < f[i - 1][j - v[i]] +w[i])
              {
                  f[i][j] = f[i - 1][j - v[i]] +w[i];
                  x[i][j] = 1;
              }
          }
      }
    cout << f[n][m] << endl;
    
    print();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值