题目描述
如图所示的螺旋折线经过平面上所有整点恰好一次。
对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度。
例如dis(0, 1)=3, dis(-2, -1)=9
给出整点坐标(X, Y),你能计算出dis(X, Y)吗?
输入格式
X和Y
对于40%的数据,-1000 <= X, Y <= 1000
对于70%的数据,-100000 <= X, Y <= 100000
对于100%的数据, -1000000000 <= X, Y <= 1000000000
输出格式
输出dis(X, Y)
样例输入
0 1
样例输出
3
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
思路:题目中其实已经给出了提示,数据到达十亿级别,要在1s内解决出来肯定常规的模拟解决不出,十亿级别数据要在一秒内解决出来时间复杂度应该是O(1),否则难以解决看了看大佬的思路发现可以把他看成正方形。
大致的算法:
1.找到层数,层数可以确定上一层以及之前一共的步数。
2.将他划分成8个区域,找到他在哪个区域。
3.找到该区域的对应函数,带入求解。
代码如下:
#include<iostream>
#include<cmath>
using namespace std;
int main(){
long long x,y,dis=0,n,tx,ty;
cin>>x>>y;
x>=0?tx=x:tx=(-1)*x;
y>=0?ty=y:ty=(-1)*y;
n = max(tx,ty);
if(x==(-1)*n&&y<=0&&y>(-1)*n){//区域6
dis=4*n*(n-1)+y-x;
}
else if(x==(-1)*n&&y<=n&&y>0){//区域7
dis=4*n*(n-1)+y-x;
}
else if(y==n&&x>(-1)*n&&x<=n){//区域1.8
dis=4*n*(n-1)+3*n+x;
}
else if(x==n){//区域2.3
dis=4*n*(n-1)+5*n-y;
}
else{//区域4.5
dis=4*n*(n-1)+7*n-x;
}
cout<<dis<<endl;
return 0;
}