螺旋折线

题目描述
如图所示的螺旋折线经过平面上所有整点恰好一次。
对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度。
例如dis(0, 1)=3, dis(-2, -1)=9
给出整点坐标(X, Y),你能计算出dis(X, Y)吗?
在这里插入图片描述
输入格式
X和Y
对于40%的数据,-1000 <= X, Y <= 1000
对于70%的数据,-100000 <= X, Y <= 100000
对于100%的数据, -1000000000 <= X, Y <= 1000000000
输出格式
输出dis(X, Y)
样例输入
0 1
样例输出
3
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms

思路:题目中其实已经给出了提示,数据到达十亿级别,要在1s内解决出来肯定常规的模拟解决不出,十亿级别数据要在一秒内解决出来时间复杂度应该是O(1),否则难以解决看了看大佬的思路发现可以把他看成正方形。

大致的算法:
1.找到层数,层数可以确定上一层以及之前一共的步数。
2.将他划分成8个区域,找到他在哪个区域。
3.找到该区域的对应函数,带入求解。

代码如下:

#include<iostream>
#include<cmath>
using namespace std;

int main(){
	long long x,y,dis=0,n,tx,ty;
	cin>>x>>y;
	x>=0?tx=x:tx=(-1)*x;
	y>=0?ty=y:ty=(-1)*y;
	n = max(tx,ty);
	
	if(x==(-1)*n&&y<=0&&y>(-1)*n){//区域6
		dis=4*n*(n-1)+y-x; 
	} 
	else if(x==(-1)*n&&y<=n&&y>0){//区域7 
		dis=4*n*(n-1)+y-x;
	}
	else if(y==n&&x>(-1)*n&&x<=n){//区域1.8
		dis=4*n*(n-1)+3*n+x;
	}
	else if(x==n){//区域2.3
		dis=4*n*(n-1)+5*n-y;
	}
	else{//区域4.5
		dis=4*n*(n-1)+7*n-x;
	}
	cout<<dis<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值