普利姆算法原理及其JAVA代码

该博客详细介绍了如何运用Prim算法来解决图的最小生成树问题。通过一个具体的实例,展示了如何构建邻接矩阵,并用Java实现Prim算法的过程。在代码中,从指定顶点开始逐步构建最小生成树,每次找到与已访问节点连接的最短边并更新,直至所有节点都被包含在内。
摘要由CSDN通过智能技术生成

原理

视频讲解:

169_尚硅谷_Prim算法解决修路问题思路图解_哔哩哔哩_bilibili

 S是已经在生成树, V-S是未在生成树。

 代码

根据尚硅谷算法代码修改

public class Prim {

    public static void main(String[] args) {
        //测试看看图是否创建ok
        char[] data = new char[]{'A','B','C','D','E','F','G'};
        int verxs = data.length;
        //邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
        int [][]weight=new int[][]{
                {10000,5,7,10000,10000,10000,2},
                {5,10000,10000,9,10000,10000,3},
                {7,10000,10000,10000,8,10000,10000},
                {10000,9,10000,10000,10000,4,10000},
                {10000,10000,8,10000,10000,5,4},
                {10000,10000,10000,4,5,10000,6},
                {2,3,10000,10000,4,6,10000},};

        Graph minTree = new Graph(data,weight);
        minTree.prim( 1);//
    }
}

class Graph {
    private char[] vertex; // 顶点数组
    private int[][] matrix; // 邻接矩阵
    private int[] visited; // 标记结点(顶点)是否被访问过

    public Graph(char vertex[], int[][] matrix) {
        this.vertex = vertex;
        this.matrix = matrix;
        visited=new int[vertex.length];
    }

    //编写prim算法,得到最小生成树
    /**
     * @param v 表示从图的第几个顶点开始生成'A'->0 'B'->1...
     */
    public void prim(int v) {
        visited[v] = 1;
        //h1 和 h2 记录两个顶点的下标
        int h1 = -1;
        int h2 = -1;
        int minWeight = 10000; //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
        for(int k = 1; k < vertex.length; k++) {//因为有 vertex.length 个顶点,普利姆算法结束后,有 vertex.length-1个边

            //这个是确定每一次生成的子图 ,和哪个结点的距离最近
            for(int i = 0; i < vertex.length; i++) {// i结点表示被访问过的结点
                for(int j = 0; j< vertex.length;j++) {//j结点表示还没有访问过的结点
                    if(visited[i] == 1 && visited[j] == 0 && matrix[i][j] < minWeight) {
                        //替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
                        minWeight = matrix[i][j];
                        h1 = i;
                        h2 = j;
                    }
                }
            }
            //找到一条边是最小
            System.out.println("边<" + vertex[h1] + "," + vertex[h2] + "> 权值:" + minWeight);
            //将当前这个结点标记为已经访问
            visited[h2] = 1;
            //minWeight 重新设置为最大值 10000
            minWeight = 10000;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值