机器学习
文章平均质量分 93
若能绽放光丶
这个作者很懒,什么都没留下…
展开
-
吴恩达深度学习:从logistic回归到深层神经网络
注意:这篇文章需要有logistic回归基础,可以参考我的这一篇文章吴恩达机器学习:从单变量线性回归到Logistic回归1. 神经网络概念首先我们要了解神经网络的形式,之所以被叫做神经网络,是因为它的工作原理和人的大脑神经相似。这是一个房屋预测的案例,我们输入房屋的大小,卧室的个数,邮政编码,财富,经过神经元的一系列计算,得到预测值price(房屋的价格)1. 前向传播和反向传播1.1. 前向传播假设我们有个神经网络,有这样一个代价函数J(a,b,c)=3(a+bc)=3(5+3×2.原创 2022-02-16 17:35:43 · 568 阅读 · 0 评论 -
机器学习:从决策树到xgboost
1. 决策树1.1. 决策树的定义决策树,顾名思义是用来做决策的,当我们决定一件事情要不要做的时候,会有很多条件。举个例子,我们决定明天要不要去打高尔夫,那么我们会考虑到明天的天气,温度等情况。这里的天气和温度就是特征,是否去打高尔夫就是类别标签。我简单画个图决策树的学习过程包括:特征选择、决策树生成、决策树剪枝。下面我将围绕这些过程讲解1.2. ID3算法这里要引入一些概念数据集的信息熵,信息熵反映了一个数据集的纯度,信息熵越大,样本纯度越低,不确定性越大。信息熵的计算公式条件熵,在原创 2021-12-30 20:22:43 · 1737 阅读 · 0 评论