leetcode 174. 地下城游戏「动态规划」「逆向思维」

174. 地下城游戏

题目描述:

二维矩阵,每个点都有一个价值,起点是左上角(1, 1),终点是右下角(n, m),初始价值为一个未知的正整数,每次只能往下或者往右走一步,到达一个新的点都要加上这个点的价值,过程中要保证总价值每时每刻的都要大于0(包括初始值),求所需的最小初始价值

思路:

一眼dp

这个题很显然可以转换成找一条路径,将路径上的价值看成一个数组,做前缀和,求前缀和数组的最小值 m i n x minx minx,答案就是 m a x ( 1 , 1 − m i n x ) max(1, 1-minx) max(1,1minx)

可以发现,我们需要在遍历的过程中维护两个变量,一个是从出发点到当前点的路径和,另一个是从出发点到当前点的所需的最小初始值

我们希望 从出发点到当前点的路径和 尽可能大,而 从出发点到当前点所需的最小初始值 尽可能小。这样转移方式也有两种,选择1会对后面的2好,选择2会对后面的1好,这两种转移方式各有优劣,其重要程度是相当的,会同时影响状态转移,这样的动态规划是不满足无后效性的

所以我们逆向考虑,考虑另一种状态:从 ( i , j ) (i, j) (i,j)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值