174. 地下城游戏
题目描述:
二维矩阵,每个点都有一个价值,起点是左上角(1, 1),终点是右下角(n, m),初始价值为一个未知的正整数,每次只能往下或者往右走一步,到达一个新的点都要加上这个点的价值,过程中要保证总价值每时每刻的都要大于0(包括初始值),求所需的最小初始价值
思路:
一眼dp
这个题很显然可以转换成找一条路径,将路径上的价值看成一个数组,做前缀和,求前缀和数组的最小值 m i n x minx minx,答案就是 m a x ( 1 , 1 − m i n x ) max(1, 1-minx) max(1,1−minx)
可以发现,我们需要在遍历的过程中维护两个变量,一个是从出发点到当前点的路径和,另一个是从出发点到当前点的所需的最小初始值
我们希望 从出发点到当前点的路径和 尽可能大,而 从出发点到当前点所需的最小初始值 尽可能小。这样转移方式也有两种,选择1会对后面的2好,选择2会对后面的1好,这两种转移方式各有优劣,其重要程度是相当的,会同时影响状态转移,这样的动态规划是不满足无后效性的
所以我们逆向考虑,考虑另一种状态:从 ( i , j ) (i, j) (i,j)