1937. 扣分后的最大得分
题目描述:
给你一个n*m
的整数矩阵ar
,一开始你的得分为0,你想最大化从矩阵中得到的分数
你的得分方式为:每一行 中选取一个格子,选中坐标为 (r, c)
的格子会给你的总得分 增加 points[r][c]
然而,相邻行之间被选中的格子如果隔得太远,你会失去一些得分。对于相邻行 r
和 r + 1
(其中 0 <= r < m - 1
),选中坐标为 (r, c1)
和 (r + 1, c2)
的格子,你的总得分 减少 abs(c1 - c2)
请你返回你能得到的 最大 得分
思路:
很经典的拆项思路
d p [ i ] [ j ] dp[i][j] dp[i][j]表示前 i − 1 i-1 i−1行均选择了一个格子,第 i i i行选了第 j j j个格子,获得的最大价值
很显然状态要从上一行转移过来
- d p [ i ] [ j ] = m a x ( d p [ i ] [ j ] , a r [ i ] [ j ] + d p [ i − 1 ] [ k ] − a b s ( k − j ) ) dp[i][j] = max(dp[i][j], ar[i][j] + dp[i - 1][k] - abs(k - j)) dp[i][j]=max(dp[i][j],ar[i][j]+dp[i−1][k]