题目描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入格式
第一行有 2 个整数 T(1≤T≤1000)和 M(1≤M≤100),用一个空格隔开,T 代表总共能够用来采药的时间,M 代表山洞里的草药的数目。
接下来的 M 行每行包括两个在 1 到 100 之间(包括 1 和 100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出格式
输出在规定的时间内可以采到的草药的最大总价值。
输入输出样例
输入 #1复制
70 3
71 100
69 1
1 2
输出 #1复制
3
说明/提示
【数据范围】
对于 30%30% 的数据,M≤10;
对于全部的数据,M≤100。
【题目来源】
NOIP 2005 普及组第三题
这道题就是一个01背包的模板,只是包装了一个采药的故事,我们直接写一下。
头文件,命名空间:
#include<bits/stdc++.h>
using namespace std;
定义能用来采药的时间t,草药的数目m;
每个草药的重量w[],价值v[],dp数组。
int t, m;
int w[101], v[101];
int dp[101][1001];
主函数,输入t和m,输入每个草药的w和v:
cin >> t >> m;
for(int i=1;i<=m;i++)
cin >> w[i] >> v[i];
下面是dp的两重循环,i循环草药的数目,j循环拥有的时间(背包的空间)。
递推式dp[i][j]=max(dp[i-1][j-w[i]]+v[i],dp[i-1][j]);
放物品i:dp[i-1][j-w[i]]。
不放物品i:dp[i-1][j]。
for(int i=1;i<=m;i++)
for(int j=t;j>0;j--)
if(j>=w[i])
dp[i][j]=max(dp[i-1][j-w[i]]+v[i],dp[i-1][j]);
else
dp[i][j]=dp[i-1][j];
最后输出最后的一项dp[m][t]。
cout << dp[m][t];
本题ok。代码:
#include<bits/stdc++.h>
using namespace std;
int t, m;
int w[101], v[101];
int dp[101][1001];
int main()
{
cin >> t >> m;
for(int i=1;i<=m;i++)
cin >> w[i] >> v[i];
for(int i=1;i<=m;i++)
for(int j=t;j>0;j--)
if(j>=w[i])
dp[i][j]=max(dp[i-1][j-w[i]]+v[i],dp[i-1][j]);
else
dp[i][j]=dp[i-1][j];
cout << dp[m][t];
return 0;
}