P3338 [ZJOI2014]力(FFT+化简)

传送门

F j = ∑ i = 1 j − 1 q i ∗ q j ( i − j ) 2 − ∑ j + 1 n q i ∗ q j ( i − j ) 2 F_j=\sum\limits_{i=1}^{j-1}\frac{q_i*q_j}{(i-j)^2}-\sum\limits_{j+1}^n\frac{q_i*q_j}{(i-j)^2} Fj=i=1j1(ij)2qiqjj+1n(ij)2qiqj

E i = F i q i E_i=\frac{F_i}{q_i} Ei=qiFi


E j = ∑ i = 1 j − 1 q i ( i − j ) 2 − ∑ i = j + 1 n q i ( i − j ) 2 E_j=\sum\limits_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum\limits_{i=j+1}^n\frac{q_i}{(i-j)^2} Ej=i=1j1(ij)2qii=j+1n(ij)2qi

我们回忆一下卷积的形式

E i = ∑ j + k = i f j ∗ g k E_i=\sum\limits_{j+k=i}f_j*g_k Ei=j+k=ifjgk

我们是不是可以凑成这个形式呢??

我们定义 f i = q i f_i=q_i fi=qi,定义 g i = 1 i 2 g_i=\frac{1}{i^2} gi=i21

那么如果只看前半部分

∑ i = 1 j − 1 q i ∗ 1 ( i − j ) 2 = ∑ i = 1 j − 1 f [ i ] ∗ g [ j − i ] \sum\limits_{i=1}^{j-1}q_i*\frac{1}{(i-j)^2}=\sum\limits_{i=1}^{j-1}f[i]*g[j-i] i=1j1qi(ij)21=i=1j1f[i]g[ji]

而且我们令 f [ 0 ] = 0 , g [ 0 ] f[0]=0,g[0] f[0]=0,g[0],那么上下标取到 j , 0 j,0 j,0也不影响

也就是计算 ∑ i = 0 j f [ i ] ∗ g [ j − i ] \sum\limits_{i=0}^{j}f[i]*g[j-i] i=0jf[i]g[ji],很明显这就是卷积的形式

那么再来看后半部分

∑ i = j + 1 n q i ∗ 1 ( i − j ) 2 = ∑ i = j n f [ i ] ∗ g [ i − j ] \sum\limits_{i=j+1}^nq_i*\frac{1}{(i-j)^2}=\sum\limits_{i=j}^{n}f[i]*g[i-j] i=j+1nqi(ij)21=i=jnf[i]g[ij]

∑ i = 0 n − j f [ i + j ] ∗ g [ i ] \sum\limits_{i=0}^{n-j}f[i+j]*g[i] i=0njf[i+j]g[i]

即使这样 i + i + j ! = j i+i+j!=j i+i+j!=j

我们定义 F [ i ] = f [ n − i ] F[i]=f[n-i] F[i]=f[ni]

那么 ∑ i = 0 n − j f [ i + j ] ∗ g [ i ] = ∑ i = 0 n − j F [ n − i − j ] ∗ g [ i ] \sum\limits_{i=0}^{n-j}f[i+j]*g[i]=\sum\limits_{i=0}^{n-j}F[n-i-j]*g[i] i=0njf[i+j]g[i]=i=0njF[nij]g[i]

其实右边已经是卷积的形式了,为什么呢?因为我们令 t = n − j t=n-j t=nj

右边就是 ∑ i = 0 t F [ t − i ] ∗ g [ i ] \sum\limits_{i=0}^{t}F[t-i]*g[i] i=0tF[ti]g[i]

求两次卷积相减即可

#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 4e5+10;
const double pi = acos(-1.0);
struct complex
{
	double x,y;
	complex(double xx=0,double yy=0){ x=xx; y=yy; }
}f[maxn],F[maxn],g1[maxn],g2[maxn];
int r[maxn],n;
complex operator - (complex a,complex b){ return complex(a.x-b.x,a.y-b.y); }
complex operator + (complex a,complex b){ return complex(a.x+b.x,a.y+b.y); }
complex operator * (complex a,complex b){ return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x); }
void FFT(complex *a,int limit,int type)
{
	for(int i=0;i<limit;i++)	if( i<r[i] )	swap( a[i],a[r[i]]  );
	for(int mid=1;mid<limit;mid<<=1)
	{
		complex wn = complex( cos(pi/mid),type*sin(pi/mid) );
		for(int i=0,R=mid<<1;i<limit;i+=R)
		{
			complex w = complex(1,0);
			for(int k=0;k<mid;k++,w=w*wn)
			{
				complex x=a[i+k], y = w*a[i+k+mid];
				a[i+k] = x+y, a[i+k+mid] = x-y;
			}
		}
	}
}
void print(complex *a)
{
	for(int i=0;i<=n;i++)	cout << a[i].x << " ";
	cout << endl;
}
void mul(complex *a,complex *b,int n,int m)
{
	int limit = 1;
	while( limit<=n+m )	limit<<=1;
	for(int i=0;i<limit;i++)
		r[i] = ( r[i>>1]>>1 )|( (i&1)?limit>>1:0 );
	for(int i=0;i<=limit;i++)
	{
		if( i>n )	a[i].x=a[i].y = 0;
		if( i>m )	b[i].x=b[i].y= 0 ;
	}
	FFT(a,limit,1); FFT(b,limit,1);
	for(int i=0;i<=limit;i++)	a[i] = a[i]*b[i];
	FFT(a,limit,-1);
	for(int i=0;i<=limit;i++)	a[i].x/=limit;
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%lf",&f[i].x );
		F[n-i+1].x = f[i].x;
	}
	for(int i=1;i<=n;i++)	g1[i].x = g2[i].x = 1.0/(double)i/(double)i;
	mul(f,g1,n,n); mul(F,g2,n,n);
	for(int i=1;i<=n;i++)
		printf("%.4lf\n",f[i].x-F[n-i+1].x );
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值