题目描述
用高精度计算出 S=1!+2!+3!+⋯+n!(n≤50)。
其中 !
表示阶乘,定义为 n!=n×(n−1)×(n−2)×⋯×1。例如,5!=5×4×3×2×1=120。
输入格式
一个正整数 n。
输出格式
一个正整数 S,表示计算结果。
输入输出样例
输入 #1
3
输出 #1
9
说明/提示
【数据范围】
对于 100%100% 的数据,1≤n≤50。
【其他说明】
NOIP1998 普及组 第二题
需要用高精度——数字超过int甚至是long long类型的数据表示范围,所以可以将数字抽象成整数数组,一位数字就是数组中的一个数字。
在本题中,用两个循环,一个是求阶乘,一个是求和,两个循环中均使用高精度的数据表示方式:先进行正常的相乘或相加,如果出现超过10的数字,注意进一,并自身模10,代码如下。
#include <bits/stdc++.h>
using namespace std;
int main(){
int i,j,a[1010]={0},b[1010]={0},n;
cin>>n;
a[0]=b[0]=1;
for(i=2;i<=n;i++){
for(j=0;j<100;j++) b[j]*=i;
for(j=0;j<100;j++){
if(b[j]>9){
b[j+1]+=b[j]/10;//超过10进1
b[j]%=10;//自身模10
}
}
for(j=0;j<100;j++){
a[j]+=b[j];
if(a[j]>9){
a[j+1]+=a[j]/10;//同上
a[j]%=10;//同上
}
}
}
for(i=100;i>=0&&a[i]==0;i--);//找到0的位置,从不是0的地方开始逆向输出
for(j=i;j>=0;j--) cout<<a[j];
return 0;
}