- 博客(11)
- 收藏
- 关注
原创 Docker 学习记录(一)
因为个人学习需要,利用空闲时间学习一下Docker相关内容,主要看的B站上狂神的视频,讲解的十分清晰透彻,因此特此进行学习记录。
2023-01-20 00:42:31 412
原创 python中对字符串的“r、f、u、b”
python中对字符串的“r、f、u、b”`r or R`字母的应用`f or F`字母的应用`b or B`字母的应用`u or U`字母的应用 在平时使用python的过程中,会看到有在字符串前面加上一个字母的用法——r、f、u、b。因此我特地在此进行一个总结,之后会时不时记录一些小技巧,设置一个专栏,等我想好名字再把它放进去。r or R字母的应用 关于r字母,通常用于字符串之前是用于取消转义字符的作用。比如说如果字符串中含有 \n,则表示就成为了一个反斜杠加上一个字母 n。print(
2021-12-28 13:52:59 1195
原创 《动手学深度学习(Dive into Deeplearning)》(第二版)——第二章 _2.4 微分
《动手学深度学习(Dive into Deeplearning)》(第二版)——第二章 _2.4 微分第二章 预备知识§ 前情回顾§ 2.4 微分2.4.1 导数和微分第二章 预备知识§ 前情回顾 前面我们回顾了线性代数相关的知识,但是也只是一些基本的。有的人说学习机器学习、深度学习不太需要了解特别详细的数学知识,但我认为还是十分有必要学习这些基础知识的。当你清楚的知道这些数学知识,就能清晰的知道一些函数的底层逻辑,而这也能让你更加得心应手地利用这些函数。§ 2.4 微分 在机器学习当中,我
2021-08-05 15:23:38 803
原创 《动手学深度学习(Dive into Deeplearning)》(第二版)——第二章 _2.3 线性代数
《动手学深度学习(Dive into Deeplearning)》(第二版)——第二章 _2.3 线性代数第二章 预备知识§ 前情回顾§ 2.3 线性代数2.3.1 标量2.3.2 向量2.3.3 矩阵2.3.4 张量2.3.5 张量算法的基本性质2.3.6 降维2.3.7 点积2.3.8 矩阵-向量积2.3.9 矩阵-矩阵乘法第二章 预备知识§ 前情回顾 之前我们学习了数据的预处理方法——删除和插值。而向量矩阵这些知识我相信朋友们在线性代数的学习中都学习过了,如果你有些遗忘了,那么让我们简单的回顾
2021-07-27 14:27:58 778
原创 《动手学深度学习(Dive into Deeplearning)》(第二版)——第二章 _2.2 数据预处理
《动手学深度学习(Dive into Deeplearning)》(第二版)——第二章 _2.2 数据预处理第二章 预备知识§ 前期回顾§ 2.2 数据预处理2.2.1 读取数据集2.2.2 处理缺失值2.2.3 转换为张量格式2.2.4 总结*课后练习*第二章 预备知识§ 前期回顾 上一节我们学习了torch中张量的一些基本操作,接下来一节我们将学习数据预处理。同样放上视频传送门:04 数据操作 + 数据预处理【动手学深度学习v2】该视频和上一节的视频是同一个哈,那么让我们开始这一节的学
2021-07-23 15:17:08 916 4
原创 《动手学深度学习(Dive into Deeplearning)》(第二版)——第二章 _2.1 数据操作
《动手学深度学习(Dive into Deeplearning)》(第二版)——第二章预备知识第二章 预备知识§ 2.0 开始2.1第二章 预备知识§ 2.0 开始从本篇开始,我们就进入一开始的预备知识的学习,如果有相关基础的朋友可以选择跳过这章直接进行后续的学习,为了方便大家能够更好地同时学习书本以及沐神直播视频的内容,我也在此放入整理好的视频以及沐神的B站主页传送门:04 数据操作 + 数据预处理【动手学深度学习v2】05 线性代数【动手学深度学习v2】06 矩阵计算【动手
2021-07-22 13:27:34 490
原创 《动手学深度学习(Dive into Deeplearning)》(第二版)——前言
《动手学深度学习(Dive into Deeplearning)》(第二版)前言前言我相信,能够来看这个文章学习的朋友们肯定都会了解过机器学习,因此介绍的部分我在此就不进行赘述了,感兴趣的朋友可以去看看官网中作者写的前言进行了解。比较重要的就是,一定要清楚的明白,无论我们遇到什么样类型的机器学习问题,这些组件都将伴随我们左右:可以用来学习的数据集(data);转换数据的模型(model);一个目标函数(objective function),也可以理解为评价函数,用来量化模型的有效性;调整
2021-07-22 11:26:53 627
原创 《动手学深度学习(Dive into Deeplearning)》(第二版)——准备
《动手学深度学习(Dive into Deeplearning)》(第二版)序言安装符号序言前面主要铺垫了一些前期介绍,下面说明一下代码部分。为了避免不必要的重复,书中将导入和引用的函数、类等封装在 d2l 包中。对于要保存到包中的任何代码块,比如一个函数、一个类或者多个导入,标记为#@save。在 sec_d2l 中能够找到这些函数和类的详细描述。d2l软件包是轻量级的,仅需要以下软件包和模块作为依赖项:#@saveimport collectionsimport hashlibimport
2021-07-22 10:41:07 967
原创 《动手学深度学习(Dive into Deeplearning)》(第二版)——启程
《动手学深度学习(Dive into Deeplearning)》启程篇今天是我第一天开始在CSDN上发表内容,还是熟悉的markdown编辑方式哈哈哈哈,想想当初第一次接触markdown编辑还是大数据技术基础这门课的老师推荐的typora编辑器,还是十分好用的。上学期的深度学习课只有半个学期,感觉一下子就把内容过了一遍,学完之后虽然自己动手实现了训练图片翻译的模型并且效果还不错(如果有时间我会考虑放上来哈哈哈),但是像是一晃而过一样真正深度学习讲了些什么我还是一知半解的,所以我打算趁着这个暑假在学校
2021-07-21 16:57:56 287
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人