二叉搜索树2—搜索和删除

目录

二叉搜索树2—搜索和删除

搜索

删除

总结


二叉搜索树2—搜索和删除

搜索

        搜索操作是在二叉搜素树中找出含有指定键值的结点u。 

node* find(node* u,int k) {
	while (u != nil&&u->key!=k) {
		if (u->key > k)u = u->l;
		else u = u->r;
	}
	return u;
}

        搜索操作从根结点开始往下搜索键值为k的结点,如果树高为h,复杂度和插入操作一样为O(h)。

删除

        删除操作在二叉搜索树中删除结点u。

        在删除结点u之后要保持二叉搜索树的性质,所以要分情况讨论,在这之前先学习一下如何找到结点u的后一个结点以及如何找到结点u之后的结点键值的最小值。

        搜索u之后结点键值最下值:


node* getminimum(node* u) {
	while (u->l != nil)u = u->l;
	return u;
}

        搜索u后一个结点(中序遍历中排在u后面的那个结点)的代码:

node* getback(node* u) {
	if (u->r != nil) {
		return getminimum(u->r);
	}
	else {
		node* y = u->p;
		while (y != nil && u == y->r) {
			u = y;
			y = y->p;
		}
		return y;
	}
}

        

        删除结点u分为三种情况:

  1. 结点u没有子结点。

  2. 结点u有一个子结点。

  3. 结点u有两个子结点。

        假设u为待删除的结点,实际删除的结点为y,y的子结点为x。那么三种情况为:

  1. u没有子结点时,删除本身,即y=u。

  2. u有一个子结点时,删除本身,即y=u,让u的父结点的子结点变为x,x的父结点变为u的父结点。

  3. u有两个结点时,u后一个结点为y,将y的值复制到u,删除y。(删除y的操作参考步骤一和步骤二)

        根据这三点,就得到了删除操作的代码:

void treedelete(node* u) {
	if (u->l == nil || u->r == nil) {
		y = u;
	}
	else y = getback(u);

	if (y->l != nil) {
		x = y->l;
	}
	else x = y->r;

	if (x != nil)x->p = y->p;

	if (y->p == nil) {
		root = x;
	}
	else if (y->p->l == y)y->p->l = x;
	else y->p->r = x;

	if (y != u)u->key = y->key;

	delete(y);

}

        将插入,搜索,删除结合到一起,实现二叉搜索树最基本的操作:

#include<iostream>
#include<string>
using namespace std;

struct node {
	int key;
	node* p, * l, * r;
};

node* root, * nil;

node* getminimum(node* u) {
	while (u->l!= nil) {
		u = u->l;
	}
	return u;
}

node* getback(node* u) {
	if (u->r != nil)return getminimum(u->r);
	node* y = u->p;
	while (y != nil && u == y->r) {
		u = y;
		y = y->p;
	}
	return y;
}

void treedelete(node* z) {

	node* y;//要删除的结点
	node* x;//y的子结点

	if (z->l==nil || z->r == nil) {
		y = z;
	}else y = getback(z);


	if (y->l != nil) {
		x = y->l;
	}else x = y->r;

	if (x != nil)x->p = y->p;

	if (y->p == nil)root = x;
	else if (y = y->p->l)y->p->l = x;
	else y->p->r = x;

	if (y != z)z->key = y->key;

	delete(y);
}
node* find(node* u,int k) {
	while (u != nil && k != u->key) {
		if (k >= u->key)u = u->r;
		else u = u->l;
	}
	return u;
}
void insert(int k) {
	node* y = nil;
	node* x = root;
	node* z;

	
	z = new node;

	z->key = k;
	z->l = nil;
	z->r = nil;
	

	while (x != nil) {
		y = x;

	if (x->key > z->key) {
		x = x->l;
	}
	else x = x->r;
	}

	z->p = y;
	if (y == nil) {
		root = z;
	}
	else if (z->key > y->key) {
		y->r = z;
	}
	else if(z->key <= y->key) y->l = z;

	
}

void inorder(node* u) {
	if (u == nil)return;
	inorder(u->l);
	printf("%d ", u->key);
	inorder(u->r);
}

void preorder(node* u) {
	if (u == nil)return;
	printf("%d ", u->key);
	preorder(u->l);
	preorder(u->r);
}

int main() {
	int n, i, x;
	string com;

	scanf("%d", &n);

	for (i = 0; i < n; i++) {
		cin >> com;
		if (com[0] == 'f') {
			scanf("%d", &x);
			node* t = find(root, x);
			if (t != nil)printf("yes\n");
			else printf("no\n");
		}
		if (com[0] == 'i') {
			scanf("%d", &x);
			insert(x);
		}
		if (com[0] == 'd') {
			scanf("%d", &x);
			treedelete(find(root, x));
		}
		 if(com[0]=='p'){
			inorder(root);
			printf("\n");
			preorder(root);
			printf("\n");
		}
	}

	return 0;
}

总结

        当树高为h时,插入,搜索,删除的算法复杂度都为O(h),也就是说,如果结点数为n,只要输入足够平衡,算法复杂度就是O(\log n) 。但是最坏情况下树高会接近n,此时算法复杂度为O(n)。因此要尽量压缩树高,整体分布均匀的二叉搜索树称为平衡二叉搜索树


读《挑战程序设计竞赛》第二十三天(侵删)2021.3.19 

( 2021.7.12 第一次修改)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值