[数据结构]堆


一、堆的概念及结构

堆是一颗完全二叉树 适用于数组存储
大堆:树中一个树及其子树中,父亲都大于等于孩子则称为大堆。将根节点最大的堆叫做最大堆或大根堆。
小堆:树中一个树及其子树中,父亲都小于等于孩子则称为小堆。将根节点最小的堆叫做最小堆或小根堆。
堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;

小堆的逻辑结构与存储结构(物理结构):
在这里插入图片描述
逻辑结构:我们想象出来的 – 完全二叉树
物理结构:实际在内存中存储的结构 – 数组
堆不一定是有序的(左孩子可以小于右孩子,也可以大于右孩子)


二、堆的实现

2.1 大堆的插入分析

在这里插入图片描述
插入数据x=8时,可以直接插入在后面
在这里插入图片描述

但是如果x=60,就不能直接插入在后面,否则就不是大堆了
在这里插入图片描述
堆插入数据堆其他节点没有影响,只可能会影响从他到根节点路径上节点关系
在这里插入图片描述

2.2 向上调整算法

调整过程:
在这里插入图片描述
结束调整时:
在这里插入图片描述

while (parent >= 0)可以作为循环条件吗?
// 不能

因为更新条件是:
child = parent;
parent = (child - 1) / 2;
当parent为0的时候,给了child,此时child也为0,再次计算parent,(0 - 1)/ 2 == 0,此时将永远循环下去
所以应该改为,child = 0时,终止程序

void AdjustUp(int* a, int child) 
{
	assert(a);
	int parent = (child - 1) / 2;
	// while (parent >= 0) 不能这样子
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			HPDataType tmp = a[child];
			a[child] = a[parent];
			a[parent] = tmp;
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

2.3 小堆的删除分析

删除堆中的元素指的是删除堆顶元素——选出最值(最小值/最大值)
在这里插入图片描述
向下调整,将他调整为堆
与左右孩子中较小的那个交换
结束条件:(有一个成立即可)
1、父亲比较小的孩子还小(含等于)则停止
2、调整到叶子节点

2.4 向下调整算法

void AdjustDown(int* a, int n, int parent) // n表示数组大小
{
	assert(a);
	int child = parent * 2 + 1;
	while (child < n) // 首先child要在数组范围内
	{
		// 小堆尽量用小于号,这样子换成大堆就直接小于号改为大于号
		if (child + 1 < n && a[child + 1] > a[child]) // 保证右孩子存在
		{
			child++;
		}
		if (a[child] > a[parent]) // 小堆大堆看小于还是大于号
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

2.5 大堆实现

#include "Heap.h"
void Swap(HPDataType* px, HPDataType* py)
{
	HPDataType tmp = *px;
	*px = *py;
	*py = tmp;
}
void HeapInit(HP* hp)
{
	assert(hp);
	hp->a = NULL;
	hp->size = hp->capacaty = 0;
}
void HeapDestroy(HP* hp)
{
	assert(hp);
	free(hp->a);
	hp->size = hp->capacaty = 0;
}
void AdjustUp(int* a, int child)
{
	assert(a);
	int parent = (child - 1) / 2;
	// while (parent >= 0) 不能这样子
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			/*HPDataType tmp = a[child];
			a[child] = a[parent];
			a[parent] = tmp;*/
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
void AdjustDown(int* a, int n, int parent) // n表示数组大小
{
	assert(a);
	int child = parent * 2 + 1;
	while (child < n) // 首先child要在数组范围内
	{
		// 小堆尽量用小于号,这样子换成大堆就直接小于号改为大于号
		if (child + 1 < n && a[child + 1] > a[child]) // 保证右孩子存在
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
void HeapPush(HP* hp, HPDataType x) 
{
	assert(hp);
	if (hp->size == hp->capacaty)
	{
		size_t newCapacity = hp->capacaty == 0 ? 4 : hp->capacaty * 2;
		HPDataType* tmp = realloc(hp->a, sizeof(HPDataType) * newCapacity);
		if (tmp == NULL)
		{
			printf("realloc fail");
			exit(-1);
		}
		hp->a = tmp;
		hp->capacaty = newCapacity;
	}
	// push要求,插入一个x后,仍然是堆
	hp->a[hp->size] = x; // 如6个数据,下标为0-5,下标为6的地方放置x
	hp->size++;
	AdjustUp(hp->a, hp->size - 1);
}
void HeapPrint(HP* hp)
{
	for (int i = 0; i < hp->size; ++i)
	{
		printf("%d ", hp->a[i]);
	}
	puts("");
}
bool HeapEmpty(HP* hp)
{
	assert(hp);
	return hp->size == 0;
}
int HeapSize(HP* hp)
{
	assert(hp);
	return hp->size;
}
void HeapPop(HP* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));
	Swap(&hp->a[0], &hp->a[hp->size - 1]);
	hp->size--;
	AdjustDown(hp->a, hp->size, 0); // 从0开始往下调整
}

2.6 小堆实现

#include "Heap.h"
void Swap(HPDataType* px, HPDataType* py)
{
	HPDataType tmp = *px;
	*px = *py;
	*py = tmp;
}
void HeapInit(HP* hp)
{
	assert(hp);
	hp->a = NULL;
	hp->size = hp->capacaty = 0;
}
void HeapDestroy(HP* hp)
{
	assert(hp);
	free(hp->a);
	hp->size = hp->capacaty = 0;
}
void AdjustUp(int* a, int child)
{
	assert(a);
	int parent = (child - 1) / 2;
	// while (parent >= 0) 不能这样子
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			/*HPDataType tmp = a[child];
			a[child] = a[parent];
			a[parent] = tmp;*/
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
void AdjustDown(int* a, int n, int parent) // n表示数组大小
{
	assert(a);
	int child = parent * 2 + 1;
	while (child < n) // 首先child要在数组范围内
	{
		// 小堆尽量用小于号,这样子换成大堆就直接小于号改为大于号
		if (child + 1 < n && a[child + 1] < a[child]) // 保证右孩子存在
		{
			child++;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
void HeapPush(HP* hp, HPDataType x) 
{
	assert(hp);
	if (hp->size == hp->capacaty)
	{
		size_t newCapacity = hp->capacaty == 0 ? 4 : hp->capacaty * 2;
		HPDataType* tmp = realloc(hp->a, sizeof(HPDataType) * newCapacity);
		if (tmp == NULL)
		{
			printf("realloc fail");
			exit(-1);
		}
		hp->a = tmp;
		hp->capacaty = newCapacity;
	}
	// push要求,插入一个x后,仍然是堆
	hp->a[hp->size] = x; // 如6个数据,下标为0-5,下标为6的地方放置x
	hp->size++;
	AdjustUp(hp->a, hp->size - 1);
}
void HeapPrint(HP* hp)
{
	for (int i = 0; i < hp->size; ++i)
	{
		printf("%d ", hp->a[i]);
	}
	puts("");
}
bool HeapEmpty(HP* hp)
{
	assert(hp);
	return hp->size == 0;
}
int HeapSize(HP* hp)
{
	assert(hp);
	return hp->size;
}
void HeapPop(HP* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));
	Swap(&hp->a[0], &hp->a[hp->size - 1]);
	hp->size--;
	AdjustDown(hp->a, hp->size, 0); // 从0开始往下调整
}


三、堆的应用

3.1 Top-k问题

在N个数中,找出最大/小的前K个数
方式1:先排序,找前K个(NlogN)——要排序所有
方式2:将N个数依次插入堆中(O(N)复杂度),PopK次(O(K
logN)复杂度),每次取堆顶的数据就是前K个(O(N+KlogN))一般K是远小于N的
向上/向下调整(完全二叉树的高度次)的时间复杂度为:[log2N,log2(N+1)]看为logN
方式3:假设N非常大,N是十亿,内存中存不下,他们存放在文件中,K是100(此时方式1和方式2都不能用了,前者都是放在数组中,10亿个整数大约占4
1G = 4G空间)
1G = 1024MB = 1024 * 1024KB = 1024 * 1024 * 1024Byte = 10亿字节左右
方法:

1、 用前K个数建立一个K个数的小堆
2、 剩下的N-K个数依次与堆顶的数据进行比较,如果比堆顶的数据大,就替换掉堆顶的数据,再向下调整
3、 最后堆里面K个数就是最大的K个数

时间复杂度:
建立一个K个数的堆:O(K)
剩下N-K个数进行向下调整高度次(logK)
O(K + (N - K)logK)约为 O(NlogK)

void PrintTopK(int* a, int n, int k)
{
	HP hp;
	HeapInit(&hp);
	// 创建一个K个数的小堆
	for (int i = 0; i < k; ++i)
	{
		HeapPush(&hp, a[i]);
	}
	// 剩下N-K个数依次与堆顶比较,比他大,就替换他进堆
	for (int i = k; i < n; ++i)
	{
		if (a[i] > HeapTop(&hp))
		{
			HeapPop(&hp);
			HeapPush(&hp, a[i]); 
			/*hp.a[0] = a[i];
			AdjustDown(hp.a, hp.size, 0);*/
		}
	}
	HeapPrint(&hp);
	HeapDestroy(&hp); 
}

3.2 堆排序

3.2.1 向上调整算法构建堆

思路:数组中第一个元素a[0]先看做是堆中的元素,后面的元素依次加入堆中,然后向上调整,构建堆

for (int i = 1; i < n; ++i)
	{
		AdjustUp(a, i);
	}

3.2.2 向下调整算法构建堆

向下调整算法前提:左右子树都必须是堆
思路:
叶子结点不需要调整,因为本身就是一个堆
从第一个非叶子结点(最后一个节点的父亲)开始

如图:构建小堆
在这里插入图片描述
第一个非叶子结点的是15,15<69,不需要调整…
直到30,30<10,需要向下调整
在这里插入图片描述

	for (int i = ((n - 1) - 1) / 2; i >= 0; --i) // n-1是下标,(n-1-1)/2是父亲
	{
		// 向下调整算法
		AdjustDown(a, n, i);
	}

3.2.3 将数组排升序建大小堆分析

将数组升序排列,构建大堆还是小堆?

建小堆分析:
1、选出最小的数,放到第一个位置
2、如何选出次小的数?——从剩下的位置开始,剩下的数看做一个堆,但这样,之前建立的堆关系全乱了,只能重新建堆,才能选出次小的数
建堆时间复杂度为O(N),这样子之后,时间复杂度为: N N-1 N-2 … N*N
因此,建小堆排升序是可以的,但是效率太低,没有体现出堆的优势

建大堆分析:
1、建大堆,选出最大的数
2、最大的数和最后一个数进行交换
3、如何选出次小的数?——把最后一个数不看做是堆里的,然后进行向下调整算法,就可以选出次小的数了,依次类推,在重复上述过程
在这里插入图片描述
排升序

void HeapSort(int* a, int n)
{
	assert(a);
	// 建立堆O(N)
	for (int i = ((n - 1) - 1) / 2; i >= 0; --i) // n-1是下标,(n-1-1)/2是父亲
	{
		// 向下调整算法
		AdjustDown(a, n, i);
	}
	// 调整堆O(N*logN)——选数N,调整logN
	// 排升序用大堆还是小堆?
	for (int end = n - 1; end > 0; --end)
	{
		Swap(&a[end], &a[0]);
		// 调整堆,选出次小的数
		AdjustDown(a, end, 0); // end是最后一个元素的下标,也是数据元素个数
	}
}

排降序,只需要将AdjustDown中改为<号即可

四、建堆时间复杂度证明

在这里插入图片描述

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值