🏆🏆欢迎大家来到我们的天空🏆🏆
🏆🏆如果文章内容对您有所触动,别忘了点赞、关注,收藏!
🏆 作者简介:我们的天空
🏆《头衔》:大厂高级软件测试工程师,阿里云开发者社区专家博主,CSDN人工智能领域新星创作者。
🏆《博客》:人工智能,深度学习,机器学习,python,自然语言处理,AIGC等分享。所属的专栏:TensorFlow项目开发实战,人工智能技术
🏆🏆主页:我们的天空
万亿参数的稀疏大模型(Sparse Large Model)和千亿参数的稠密大模型(Dense Large Model)代表了当前深度学习领域的两种极端架构。这两种模型在原理、概述、区别以及应用场景上各有特点。下面将详细探讨这两类模型的特点和应用场景,并给出具体实例。
一、万亿参数的稀疏大模型
1. 原理
- 稀疏性: 稀疏模型的关键在于其参数并不是全部活跃的,而是只有部分参数在处理特定任务时才会被激活。这种机制使得模型可以在拥有大量参数的同时,仍然保持较低的计算成本。
- 混合专家(Mixture of Experts, MoE): 通常采用MoE架构,通过门控机制(gating mechanism)选择合适的专家网络来处理特定任务。每个专家网络只负责一部分计算工作,而不是整个模型的所有参数都参与计算。</