【人工智能】详细探讨【万亿稀松大模型】和【千亿稠密大模型】的特点和应用场景,并给出具体实例

🏆🏆欢迎大家来到我们的天空🏆🏆

🏆🏆如果文章内容对您有所触动,别忘了点赞、关注,收藏!

🏆 作者简介:我们的天空

🏆《头衔》:大厂高级软件测试工程师,阿里云开发者社区专家博主,CSDN人工智能领域新星创作者。
🏆《博客》:人工智能,深度学习,机器学习,python,自然语言处理,AIGC等分享。

所属的专栏:TensorFlow项目开发实战人工智能技术
🏆🏆主页:我们的天空

万亿参数的稀疏大模型(Sparse Large Model)和千亿参数的稠密大模型(Dense Large Model)代表了当前深度学习领域的两种极端架构。这两种模型在原理、概述、区别以及应用场景上各有特点。下面将详细探讨这两类模型的特点和应用场景,并给出具体实例。

一、万亿参数的稀疏大模型

1. 原理
  • 稀疏性: 稀疏模型的关键在于其参数并不是全部活跃的,而是只有部分参数在处理特定任务时才会被激活。这种机制使得模型可以在拥有大量参数的同时,仍然保持较低的计算成本。
  • 混合专家(Mixture of Experts, MoE): 通常采用MoE架构,通过门控机制(gating mechanism)选择合适的专家网络来处理特定任务。每个专家网络只负责一部分计算工作,而不是整个模型的所有参数都参与计算。</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@我们的天空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值