一尺之棰

该博客探讨了一个有趣的数学问题,源自《庄子》中的思想实验。问题描述了一根长度为a的木棍,每天将其锯掉一半,直到木棍长度变为1。文章通过编程实现,展示了如何计算达到这一状态所需的天数,输入不同长度的木棍,输出相应的天数。例如,对于长度为100的木棍,答案是7天。此问题涉及了迭代和二分的概念,适合对数学和算法感兴趣的读者。
摘要由CSDN通过智能技术生成

题目描述
《庄子》中说到,“一尺之棰,日取其半,万世不竭”。第一天有一根长度为 a(a<= 10^9) 的木棍,从第二天开始,每天都要将这根木棍锯掉一半(每次除 2,向下取整)。第几天的时候木棍会变为 1?

输入格式

输出格式

输入输出样例
输入
100
输出
7

特别注意木棍等于1时特殊判断

#include<stdio.h>
#include<iostream>
using namespace std;
int main(){
	double x;
	int j;
	cin>>x;
	if(x==1){
		cout<<1;
		return 0;
	}else{
	while(x>1){
		j++;
		x/=2;
	}
	cout<<j;
}
	return 0;
}
庄子》中的“一尺日取其半万世不竭”是一个很有名的数学问题。它可以用数列和级数的概念来解释。 首先,我们假设有一根长度为1尺的木棍,每天取其一半。这样,第一天我们取走的长度为1/2尺,第二天我们取走的长度为(1/2)×(1/2)=1/4尺,第三天我们取走的长度为(1/2)×(1/2)×(1/2)=1/8尺……以此类推,第n天我们取走的长度为(1/2)^n尺。 现在我们可以列出这个数列:1/2, 1/4, 1/8, 1/16, …… 它是一个等比数列,公比为1/2。我们可以用数学公式来表示:an=(1/2)^n。 接下来,我们需要求出这个数列的和,也就是这个问题所涉及的级数的和。根据数学公式,等比数列的和可以用以下公式表示: S=a1/(1-q),其中a1是数列的第一个数,q是公比。将a1=1/2,q=1/2代入公式,得到: S=1/(1-1/2)=2 这个结果表明,即使我们每天取走木棍的一半,这根木棍长度也永远不会耗尽。这是因为这个级数的和是有限的,为2。也就是说,无论我们取多少次,这根木棍长度都会保留下来一部分,不会完全消失。 这个问题的解释可以帮助我们理解级数的概念。级数是指一个无穷数列的和,如果这个和是有限的,我们就说这个级数是收敛的。而如果这个和是无限的,我们就说这个级数是发散的。在这个问题中,级数的和是有限的,因此这个级数是收敛的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

書盡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值