lower_bound() 返回的是位置
查找第一个不小于目标的数/查找最后一个小于目标的数
upper_bound() 返回的是位置 查找第一个大于目标值的数/查找最后一个不大于目标值的数
数的范围
给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。
对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。
如果数组中不存在该元素,则返回 -1 -1。
输入格式
第一行包含整数 n 和 q,表示数组长度和询问个数。
第二行包含 n 个整数(均在 1∼10000 范围内),表示完整数组。
接下来 q 行,每行包含一个整数 k,表示一个询问元素。
输出格式
共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回 -1 -1。
数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int N=1e5+10;
int a[N];
int n,m;
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++){
cin>>a[i];
}
for(int i=0;i<m;i++){
int y;
cin>>y;
int t1=lower_bound(a,a+n,y)-a;//STL库函数模板
int t2=upper_bound(a, a + n, y)-a-1;
if(a[t1]==y&&a[t2]==y)
cout<<t1<<" "<<t2<<endl;
else{
cout<<-1<<" "<<-1<<endl;
}
}
return 0;
}
数的三次方根
给定一个浮点数 n,求它的三次方根。
输入格式
共一行,包含一个浮点数 n。
输出格式
共一行,包含一个浮点数,表示问题的解。
注意,结果保留 6 位小数。
数据范围
−10000≤n≤10000
输入样例:
1000.00
输出样例:
10.000000
#include<bits/stdc++.h>
using namespace std;
int main(){
double n;
cin>>n;
double l=-10000,r=10000;
while(r-l>=1e-7){
double mid=(l+r)/2;
if(mid*mid*mid>=n) r=mid;
else l=mid;
}
printf("%lf",l);
return 0;
}
分巧克力
视频讲解
儿童节那天有 K 位小朋友到小明家做客。
小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N 块巧克力,其中第 i 块是 Hi×Wi 的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。
切出的巧克力需要满足:
形状是正方形,边长是整数
大小相同
例如一块 6×5 的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入格式
第一行包含两个整数 N 和 K。
以下 N 行每行包含两个整数 Hi 和 Wi。
输入保证每位小朋友至少能获得一块 1×1 的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
数据范围
1≤N,K≤105,
1≤Hi,Wi≤105
输入样例:
2 10
6 5
5 6
输出样例:
2
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,k;
int h[N],w[N];//高,宽
int put(int a){
int sum=0;
for(int i=0;i<n;i++)
sum+=(h[i]/a)*(w[i]/a);//计算每一块能分出多少小块巧克力
return sum;
}
int main(){
cin>>n>>k;
for(int i=0;i<n;i++){
cin>>h[i]>>w[i];
}
int l=0,r=N;//l从0开始
while(l<r){
int mid=(l+r+1)/2;//+1,题目保证至少是一
if(put(mid)>=k) l=mid;//如果分成的巧克力大于等于题目需要的数量,
else r=mid-1;
}
cout<<l;
return 0;
}
找x
题目描述
输入一个数n,然后输入n个数值各不相同,再输入一个值x,输出这个值在这个数组中的下标(从0开始,若不在数组中则输出-1)。
输入
测试数据有多组,输入n(1<=n<=200),接着输入n个数,然后输入x。
输出
对于每组输入,请输出结果。
样例输入 Copy
4
1 2 3 4
3
样例输出 Copy
2
#include<stdio.h>
int a[205]={0};
int er(int a[],int l,int r,int x){
int mid=0;
while(l<=r){
mid=(l+r)/2;
if(a[mid]==x) return mid;
else if(a[mid]>x) r=mid-1;
else l=mid+1;
}
return -1;
}
int main(){
int n,m;
while(scanf("%d",&n)!=EOF){
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
scanf("%d",&m);
int cot=er(a,0,n-1,m);
printf("%d\n",cot);
}
return 0;
}
打印极值点下标
题目描述
在一个整数数组上,对于下标为i的整数,如果它大于所有它相邻的整数,或者小于所有它相邻的整数,则称为该整数为一个极值点,极值点的下标就是i。
输入
每个案例的输入如下:
有2×n+1行输入:第一行是要处理的数组的个数n;
对其余2×n行,第一行是此数组的元素个数k(4<k<80),第二行是k个整数,每两个整数之间用空格分隔。
输出
每个案例输出不多于n行:每行对应于相应数组的所有极值点下标值,下标值之间用空格分隔,如果没有极值点则不输出任何东西。
样例输入 Copy
2
4
1 2 1 3
5
3 4 5 6 7
样例输出 Copy
0 1 2 3
0 4
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;
//题目也没说一直读入,搞不懂
//空格,换行,卡的死死的
while(cin>>n){//这里使用scanf读入会出现时间超限,可以使用while(~scanf())读入 或者cin读入
while(n--){
int a[100]={0};
int m;
cin>>m;
for(int i=0;i<m;i++){
cin>>a[i];
}
int k=0;
for(int i=0;i<m;i++){
if(i==0&&a[1]!=a[0]||i==m-1&&a[m-1]!=a[m-2]||a[i]>a[i+1]&&a[i]>a[i-1]||a[i]<a[i-1]&&a[i]<a[i+1]){//正常情况,第一个,最后一个,判断是否与旁边一个相等即可,不相等,输出下标,其他的判断是否同时大于或者小于旁边两个,条件成立则输出下标
cout<<i;
k=1;//标记,为了处理换行
if(i!=m-1){
cout<<" ";
}
}
}
if(k>0){
cout<<endl;
}
}
}
return 0;
}
查找
题目描述
输入数组长度 n
输入数组 a[1…n]
输入查找个数m
输入查找数字b[1…m]
输出 YES or NO 查找有则YES 否则NO 。
输入
输入有多组数据。
每组输入n,然后输入n个整数,再输入m,然后再输入m个整数(1<=m<=n<=100)。
输出
如果在n个数组中输出YES否则输出NO。
样例输入 Copy
6
3 2 5 4 7 8
2
3 6
样例输出 Copy
YES
NO
#include<bits/stdc++.h>
using namespace std;
int a[10005]={0};
int b[10005]={0};
bool put(int a[],int l,int r,int x){
int mid=0;
while(l<=r){
mid=(l+r)/2;
if(a[mid]==x) return true;
else if(a[mid]>x) r=mid-1;
else l=mid+1;
}
return false;
}
int main(){
int n;
while(cin>>n){
for(int i=0;i<n;i++){
cin>>a[i];
}
int m;
cin>>m;
for(int i=0;i<m;i++){
cin>>b[i];
}
sort(a,a+n);
for(int i=0;i<m;i++){
if(put(a,0,n-1,b[i])){
cout<<"YES"<<endl;
}else{
cout<<"NO"<<endl;
}
}
}
return 0;
}