【操作系统】工作集和驻留集计算方法

本文解释了计算机系统中的驻留集,即进程分配的页框数量,以及工作集,即在特定时间点活跃并可能需要立即访问的页框。通过示例说明了如何确定工作集去重后的集合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

驻留集

驻留集为系统给进程分配的页框数,为6

工作集

工作集为在某个时间点上正处于工作窗口的进程
例如上题t时间点,正处于工作窗口的为6, 0,3, 2,3, 2。故最终的工作集去重之后为 {6,0,3,2}

### 缺页率与页面置换算法的关系 在虚拟存储管理中,当进程访问不在内存中的页面时会发生缺页中断。缺页率是指单位时间内发生的缺页次数占总访存次数的比例[^1]。 不同的页面置换算法直接影响到缺页率的高低。例如: - **FIFO (先进先出)** 页面置换算法可能会导致 Belady 异常现象,即增加分配给程序的物理页面数反而使缺页率上升。 - **LRU (最近最少使用)** 置换策略通常能更好地预测未来使用的页面情况,从而降低缺页频率。 - **OPT (最佳替换)** 虽然是理论上的理想模型,在实际应用不可实现,但提供了最优解作为评估其他算法的标准[^2]。 ### 计算方法 #### 缺页率计算公式 \[ \text{缺页率} = \frac{\text{缺页次数}}{\text{总的页面访问次数}} \] 对于一个具体的例子来说,如果某段时间内发生了 10 次缺页而总共进行了 100 次页面请求,则该时间段内的缺页率为 10%。 #### 页面置换率定义及其影响因素 页面置换率指的是每秒钟发生多少次页面被移入或移出的情况。这不仅取决于所采用的具体页面调度机制,还受到工作集大小变化的影响——当应用程序的工作模式发生变化时(比如从I/O密集型转为CPU密集型),其所需保持驻留于RAM里的活动数据量也会随之改变,进而引起更高的页面交换需求[^3]。 ```python def calculate_page_fault_rate(page_requests, page_faults): """计算缺页率""" return page_faults / len(page_requests) page_requests = ['A', 'B', 'C', 'D', 'E'] page_faults = 2 # 假设在这五个页面请求中有两次缺页 print(f"缺页率: {calculate_page_fault_rate(page_requests, page_faults):.2f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值