【题目描述】
你玩过“拉灯”游戏吗?
25 盏灯排成一个 5×5 的方形。
每一个灯都有一个开关,游戏者可以改变它的状态。
每一步,游戏者可以改变某一个灯的状态。
游戏者改变一个灯的状态会产生连锁反应:和这个灯上下左右相邻的灯也要相应地改变其状态。
我们用数字 1 表示一盏开着的灯,用数字 0 表示关着的灯。
下面这种状态:
10111
01101
10111
10000
11011
在改变了最左上角的灯的状态后将变成:
01111
11101
10111
10000
11011
再改变它正中间的灯后状态将变成:
01111
11001
11001
10100
11011
给定一些游戏的初始状态,编写程序判断游戏者是否可能在 6 步以内使所有的灯都变亮。
【输入格式】
第一行输入正整数 n,代表数据中共有 n 个待解决的游戏初始状态。
以下若干行数据分为 n 组,每组数据有 5 行,每行 5 个字符。
每组数据描述了一个游戏的初始状态。
各组数据间用一个空行分隔。
【输出格式】
一共输出 n 行数据,每行有一个小于等于 6 的整数,它表示对于输入数据中对应的游戏状态最少需要几步才能使所有灯变亮。
对于某一个游戏初始状态,若 6 步以内无法使所有灯变亮,则输出 −1。
【数据范围】
0<n≤500
【题目思想】
根据题目的机制,如果第一行的亮暗是确定的话,那么如果要保持全亮,下面4行的灯泡就都是确定的。
因此我们需要对第一行进行操作上的枚举(注意:这里说的是对第一行进行操作而并非是状态)每一个都有2种可能,操作或者不操作,因此第一行有32种可能,用二进制来表示。最后对1-4行进行操作,因为第5行不能操作,否则会影响前面的灯泡,当1-4行全亮时,判断第五行是否亮,详情看代码
【代码描述】
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
char g[6][6],backup[6][6];
int T;
int dx[] = {-1,0,1,0,0};
int dy[] = {0,1,0,-1,0};
void turn(int x,int y)
{
for(int k = 0;k <= 4;k++)
{
int tx = x + dx[k];
int ty = y + dy[k];
if(tx < 0||tx >= 5||ty < 0||ty >= 5) continue; //出边界
g[tx][ty] ^= 1;
}
}
int main()
{
cin >> T;
while(T--)
{
int res = 10;
for(int i = 0;i < 5;i++) cin >> g[i];
for(int op = 0;op < 32 ; op++) //2的五次方
{
memcpy(backup,g,sizeof g); 需要给该初始数组备份,因为32个可能是平行关系
int step = 0;
for(int i = 0;i < 5;i++)
if( (op >> i) & 1 )//判断第i位是否需要进行操作
{
step ++;
turn(0,i);
}
for(int i = 0;i < 4;i++)
for(int j = 0;j < 5;j++)
if(g[i][j] == '0')
{
step++;
turn(i+1,j);
}
bool dark = false;
for(int j = 0;j < 5;j++) //对第五行的判断
if(g[4][j] == '0')
{
dark = true;
break;
}
if(!dark) res = min(res,step);
memcpy(g,backup,sizeof g);还原,将之前备份的数组赋给变化了的数组
}
if(res > 6) res = -1;
cout << res << endl;
}
}