- 博客(10)
- 收藏
- 关注
原创 异常类全局增强
摘要:解决Spring框架中BeanCreationException异常增强失效问题。当自定义异常处理类GlobalExceptionHandle无法捕获Bean创建异常时,原因是Spring在注入Bean失败时尚未扫描到该处理器。解决方法是在META-INF/spring/spring.factories文件中配置ApplicationListener接口的实现类为自定义异常类,确保容器启动时提前加载该处理器,使其能在Bean实例化前生效。这样就能在Bean创建失败时成功捕获并处理异常。(149字)
2025-08-14 14:09:11
117
转载 Java对象注入的常见方式
本文介绍了三种常见的依赖注入方式:1)构造器注入,通过构造函数传入依赖对象;2)Setter方法注入,使用@Autowired注解的setter方法设置依赖;3)字段注入,直接在字段上使用@Autowired/@Resource注解。三种方式各有特点,构造器注入推荐用于必需依赖,Setter注入适合可选依赖,字段注入虽然简便但不推荐使用。
2025-08-05 17:58:12
37
原创 同一局域网内远程控制其他电脑
与其他设备进行远程控制(客户端与服务端必须属于同一局域网),另外服务端也想被控制,也可以下载软件进行配置。Ps: 如果没有linux电脑作为中转站,可以通过使用虚拟机的方式作为中转站。是windows电脑端的安装包,双击下一步即可。下载.deb安装包后进行安装使用以下命令。配置中转站信息以便通过中转站在。
2024-11-30 20:14:58
963
原创 Yolov8检测框标签的字被挤到外面解决办法
找到self.sf = self.lw / 6 # font scale 更改/号后面的值,值越大,显示的内容越多,即被挤到外面的部分越少。找到ultralytics/utils下的plotting.py。
2024-09-29 09:11:13
373
原创 深度学习个人知识点总结
nn.Conv2d 功能:对多个二维信号进行二维卷积定义:卷积运算:卷积核在输入信号(图像)上滑动,相应位置上进行乘加;卷积核:又称为滤波器,过滤器,可认为是某种模式,某种特征;卷积维度:一般情况下,卷积核在几个维度上滑动,就是几维卷积功能:卷积过程类似于用一个模板去图像上寻找与他相似的区域,与卷积核模式越相似,激活值越高,从而实现特征提取;过程:卷积核(类似于一个模板)在图像上划动相应位置上乘加,从而实现特征提取主要参数(包含默认值):in_channels:输入通道数。
2024-03-30 08:37:28
2059
1
原创 【BUG解决】 RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.cuda.FloatTensor).
【代码】【BUG解决】 RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.cuda.FloatTensor).
2024-03-24 12:55:11
292
2
原创 关于深度学习的个人理解
nn.Conv2d 功能:对多个二维信号进行二维卷积定义:- 卷积运算:卷积核在输入信号(图像)上滑动,相应位置上进行乘加;- 卷积核:又称为滤波器,过滤器,可认为是某种模式,某种特征;- 卷积维度:一般情况下,卷积核在几个维度上滑动,就是几维卷积功能:卷积过程类似于用一个模板去图像上寻找与他相似的区域,与卷积核模式越相似,激活值越高,从而实现特征提取;过程:卷积核(类似于一个模板)在图像上划动相应位置上乘加,从而实现特征提取主要参数(包含默认值):in_channels:输入通道数。
2024-03-16 16:22:35
1667
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人