题目
代码(首刷看解析)
看评论说类似于楼梯问题(斐波那契数列),说这类型的题都可以归结于路径规划。
我一开始在想为啥不是dp[i] = dp[i-1]+1
,实际上就是一种路径规划,想象一下,你当前的一步都是前面一步的必要结果,所以不需要+1。你爬楼梯不也是dp[i] = dp[i-1]+dp[i-2]
吗,爬到第i个楼梯的方法等于前面两个方法的总和,对吧。
class Solution {
public:
int numDecodings(string s) {
int n = s.size();
vector<int> dp(n+1);
dp[0] = 1;
dp[1] = s[0]=='0' ? 0 : 1;
// 注意 dp 数组和 s 之间的索引偏移一位
for(int i = 2; i <= n; i++) {
char c = s[i-1], d = s[i-2]; // 这里是当前位置和前一位置
if(c >= '1' && c <= '9') // 1. s[i] 本身可以作为一个字母
dp[i] += dp[i-1];
if((d == '1') || (d == '2' && c <= '6')) // 2. s[i] 和 s[i - 1] 结合起来表示一个字母
dp[i] += dp[i-2];
}
return dp[n];
}
};
代码(8.25 二刷自解)
试了好多遍,还是有很多细节需要注意的。
class Solution {
public:
int solve(string nums) {
int n = nums.size();
if(nums == "0")
return 0;
vector<int> dp(n+1);
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i <= n; i++) {
if(nums[i-1] != '0')
dp[i] = dp[i-1];
int num = (nums[i-2]-'0')*10 + (nums[i-1]-'0');
if(nums[i-2] != '0' && num > 0 && num <= 26) {
dp[i] += dp[i-2];
}
}
return dp[n];
}
};