算法动态规划之杂交水果取名问题

本文介绍如何使用动态规划解决新水果命名问题,通过找到两种水果名称的最长公共子序列,结合递归策略,创建最短的新名字。涉及算法包括dp数组和b数组的构建,以及输出新水果名称的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个问题需要借鉴到动态规划中非常典型的:最大公共子序列问题的算法

【问题描述】

两种水果杂交出一种新水果,现在给新水果取名,要求这个名字中包含了以前两种水果名字的字母,并且这个名字要尽量短。也就是说以前的一种水果名字arr1是新水果名字arr的子序列,另一种水果名字arr2也是新水果名字arr的子序列。设计一个算法求arr 

例如:输入以下3组水果名称: 

apple peach

ananas banana

pear peach

输出的新水果名称如下: 

appleach

bananas

pearch 

【提示】

本题目的思路是先求 arr1 arr2 字符串的最长公共子序列,基本过程参见《教程》第88.5节,再利用递归输出新水果取名。 

算法中设置二维动态规划数组dpdp[i][j]表示arr1[0..i-1]i个字母)和arr2[0..j-1]j个字母)中最长公共子序列的长度。另外设置二维数组bb[i][j]表示arr1arr2比较的3种情况

b[i][j]=0表示arr1[i-1]=arr2[j-1]

b[i][j]=1表示arr1[i-1]arr2[j-1]并且dp[i-1][j]>dp[i][j-1]

b[i][j]=2表示arr1[i-1]arr2[j-1]并且dp[i-1][j]dp[i][j-1] 

主要算法框架

void main( ) {

int t; //输入测试用例个数

printf("测试用例个数: ");

scanf("%d",&t);

while(t--) {

  scanf("%s",arr1);

scanf("%s",arr2);

memset(b,-1,sizeof(b));

m=strlen(arr1);    //m为arr1的长度

n=strlen(arr2);     //n为arr2的长度

LCSlength(  );     //求出dp, 并且给b[][]数组赋值 

printf("结果: ");

Output(m,n); //输出新水果取名

printf("\n");

}

}

void Output(int i, int j){  //利用递归输出新水果取名 

if (i==0 && j==0)  //输出完毕

return;

if(i==0) {       //arr1完毕,输出arr2的剩余部分 

Output(i,j-1);

printf("%c",arr2[j-1]);

return;

}

else if(j==0) {    //arr2完毕,输出arr1的剩余部分 

Output(i-1,j);

printf("%c",arr1[i-1]);

return;

}

if (b[i][j]==0) {    //arr1[i-1]=arr2[j-1]的情况 

Output(i-1,j-1);

printf("%c",arr1[i-1]);

return;

}

else if(b[i][j]==1) {  

Output(i-1,j);

printf("%c",arr1[i-1]);

return;

}

else{

 Output(i,j-1);

printf("%c",arr2[j-1]);

return;

}

}

源代码部分:

#include<bits/stdc++.h>
using namespace std;
#define MAX 51				//序列中最多的字符个数
//问题表示
int m,n;
string a,b;				//求解结果表示
int dp[MAX][MAX];			//动态规划数组
int bs[MAX][MAX];
vector<char> subs;			//存放LCS
void LCSlength()			//求dp
{  int i,j;
   for (i=0;i<=m;i++)			//将dp[i][0]置为0,边界条件
      dp[i][0]=0;
   for (j=0;j<=n;j++)			//将dp[0][j]置为0,边界条件   
      dp[0][j]=0;
   for (i=1;i<=m;i++)
      for (j=1;j<=n;j++)		//两重for循环处理a、b的所有字符
      {  if (a[i-1]==b[j-1]){
	  	dp[i][j]=dp[i-1][j-1]+1;
	  	bs[i][j]=0;
	  }
         else{
		 	dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
		 	if(dp[i-1][j]>dp[i][j-1]) bs[i][j]=1;
		 	else bs[i][j]=2;
		 }			
            
      }
}
void output(int i,int j){
	if(i==0 && j==0) return;
	if(i==0){
		output(i,j-1); cout<<b[j-1]; return;
	}
	else if(j==0){
		output(i-1,j); cout<<a[i-1]; return;
	}
	if(bs[i][j]==0){
		output(i-1,j-1);cout<<a[i-1];return;
	}
	else if(bs[i][j]==1){
		output(i-1,j);cout<<a[i-1];return;
	}
	else{
		output(i,j-1);cout<<b[j-1];return;
	}
}
int main(){
	cin>>a>>b;
	m=a.length();n=b.length();
	LCSlength();
	output(m,n);
	return 0;
}

在C语言中,我们可以使用动态规划(Dynamic Programming)来计算字符串的最长公共子序列(Longest Common Subsequence, LCS)。这里可以创建一个二维数组,`lcs[i][j]` 表示两个输入字符串 `a` 的前 `i` 个字符和 `b` 的前 `j` 个字符的最长公共子序列的长度。以下是算法步骤: 1. 初始化:如果 `i=0` 或 `j=0`,`lcs[i][j]=0`,表示空字符串之间的LCS长度为0。 2. 当 `a[i-1] == b[j-1]` 时,`lcs[i][j] = lcs[i-1][j-1] + 1`,因为当前字符匹配,所以长度加一。 3. 否则,`lcs[i][j] = max(lcs[i-1][j], lcs[i][j-1])`,选择忽略一个字符后剩余部分的最大LCS长度。 4. 最终,`lcs[m][n]` 就是所需的最长公共子序列的长度,新植物的名字可以由 `a` 和 `b` 中的部分按照LCS构建。 下面是一个简单的C语言实现: ```c #include <stdio.h> #include <string.h> char* findLCS(char* a, char* b, int m, int n) { int lcsLength = 0; int lcs[][] = {0}; for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { if (a[i - 1] == b[j - 1]) { if (lcsLength == 0 || lcs[lcsLength - 1][lcsLength - 1] < i - 1 + j - 1) { lcsLength++; } lcs[i][j] = lcsLength; } else { lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1]); } } } // 构建LCS char* result = (char*)malloc((lcsLength + 1) * sizeof(char)); int k = lcsLength; for (int i = m, j = n; i > 0 && j > 0; i--, j--) { if (a[i - 1] == b[j - 1]) { result[k--] = a[i - 1]; i--; j--; } else if (lcs[i - 1][j] > lcs[i][j - 1]) { i--; } else { j--; } } result[k] = '\0'; return result; } // 示例 int main() { char a[] = "ananas"; char b[] = "canana"; int m = strlen(a); int n = strlen(b); char* newPlantName = findLCS(a, b, m, n); printf("新植物的名字: %s\n", newPlantName); free(newPlantName); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宾宾有李&生活主义者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值