使用openvino编写YOLOv10的推理代码(c++版)

1.yolov10推理代码

#include <iostream>
#include <string>
#include <vector>
#include <openvino/openvino.hpp> 
#include <opencv2/opencv.hpp> 
 std::vector<cv::Scalar> colors = { cv::Scalar(0, 0, 255) , cv::Scalar(0, 255, 0) , cv::Scalar(255, 0, 0) ,
                                   cv::Scalar(255, 100, 50) , cv::Scalar(50, 100, 255) , cv::Scalar(255, 50, 100) };
const std::vector<std::string> class_names = {
        "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
        "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
        "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
        "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
        "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
        "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
        "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
        "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
        "hair drier", "toothbrush" };
using namespace cv;
using namespace dnn;

Mat letterbox(const cv::Mat& source)
{
    int col = source.cols;
    int row = source.rows;
    int _max = MAX(col, row);
    Mat result = Mat::zeros(_max, _max, CV_8UC3);
    source.copyTo(result(Rect(0, 0, col, row)));
    return result;
}
int main(int argc, char* argv[])
{
    int64 start = cv:: getTickCount();
    ov::Core core;
    auto compiled_model = core.compile_model("/home/master/yolov10/yolov10x.xml");
    ov::InferRequest infer_request = compiled_model.create_infer_request();
    Mat img = cv::imread("/home/master/yolov10/12.jpg");
    Mat letterbox_img = letterbox(img);
    float scale = letterbox_img.size[0] / 640.0;
    Mat blob = blobFromImage(letterbox_img, 1.0 / 255.0, Size(640, 640), Scalar(), true);
    auto input_port = compiled_model.input();
    ov::Tensor input_tensor(input_port.get_element_type(), input_port.get_shape(), blob.ptr(0));
    infer_request.set_input_tensor(input_tensor);
    infer_request.infer();
    auto output = infer_request.get_output_tensor(0);
    auto output_shape = output.get_shape();
    std::cout << "The shape of output tensor:" << output_shape << std::endl;
    int rows = output_shape[2];        
    int dimensions = output_shape[1];  
    float* data = output.data<float>();
    Mat output_buffer(output_shape[1], output_shape[2], CV_32F, data);
    float score_threshold = 0.15;
    std::vector<int> class_ids;
    std::vector<float> class_scores;
    std::vector<Rect> boxes;
    for (int i = 0; i < output_buffer.rows; i++) {
        float confidence = output_buffer.at<float>(i, 4);
        if (confidence > score_threshold) {
            int xmin = output_buffer.at<float>(i, 0) * scale;
            int ymin = output_buffer.at<float>(i, 1) * scale;
            int xmax = output_buffer.at<float>(i, 2) * scale;
            int ymax = output_buffer.at<float>(i, 3) * scale;
            int width = xmax - xmin;
            int height = ymax - ymin;
            int ID = (int)output_buffer.at<float>(i, 5);
            boxes.push_back(Rect(xmin, ymin, width, height));
            class_scores.push_back(confidence);
            class_ids.push_back(ID);
        }
    }
    for (size_t i = 0; i < boxes.size(); i++)
    {
        rectangle(img, boxes[i], colors[class_ids[i] % 6], 2, 8);
        std::string label = class_names[class_ids[i]] + ":" + std::to_string(class_scores[i]).substr(0, 4);
        Size textSize = cv::getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, 0);
        Rect textBox(boxes[i].tl().x, boxes[i].tl().y - 15, textSize.width, textSize.height+5);
        cv::rectangle(img, textBox, colors[class_ids[i] % 6], FILLED);
        putText(img, label, Point(boxes[i].tl().x, boxes[i].tl().y - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255, 255, 255));
    }
    int64 end = cv::getTickCount();
    double frequency = cv::getTickFrequency();
    double duration = (end - start) / frequency;
    std::cout << "Execution time: " << duration << " seconds" << std::endl;
    namedWindow("result", WINDOW_AUTOSIZE);
    cv::imwrite("../resultv10.jpg", img);
    imshow("result", img);
    waitKey(0);
    destroyAllWindows();
    return 0;
}

2.CMakeLists

cmake_minimum_required(VERSION 3.0.0)
project(yolo5 VERSION 0.1.0 LANGUAGES C CXX)

include(CTest)
enable_testing()

set(INC_DIR /opt/intel/openvino/runtime/include)
set(LINK_DIR /opt/intel/openvino/runtime/lib/intel64)
set(CMAKE_CXX_STANDARD 17)
include_directories(${INC_DIR})
link_directories(${LINK_DIR})
link_libraries(libopenvino.so)

add_executable(yolo10 yolo.cpp)

target_link_libraries(yolo10 libopenvino.so)

set(CPACK_PROJECT_NAME ${PROJECT_NAME})
SET(CPACK_PROJECT_VERSION ${PROJECT_VERSION})

include(CPack)
find_package(OpenCV)
include_directories(${OpenCV_INCLUDE_DIRS})
target_link_libraries(yolo10 ${OpenCV_LIBS})

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mmasterer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值