1.首先获得padim算法的onnx权重。
2.根据该博主的博文https://blog.csdn.net/m0_57315535/article/details/131749856?spm=1001.2014.3001.5502
得到padim算法的c++推理过程,通过本人小修改代码如下:
inferencer.cpp
#include"Inferencer.h"
Inferencer::Inferencer(const char* modelPath)
{
Ort::Env env(ORT_LOGGING_LEVEL_WARNING);
Ort::SessionOptions session_options;
session_options.SetIntraOpNumThreads(1);
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
cout << "Onnxruntime C++ API\n";
session = new Ort::Session(env, modelPath, session_options);
}
void Inferencer::preProcess(const cv::Mat& image, cv::Mat& image_blob)
{
cv::Mat input;
image.copyTo(input);
std::vector<cv::Mat> channels, channel_p;
split(input, channels);
cv::Mat R, G, B;
B = channels.at(0);
G = channels.at(1);
R = channels.at(2);
B = (B / 255. - 0.406) / 0.225;
G = (G / 255. - 0.456) / 0.224;
R = (R / 255. - 0.485) / 0.229;
channel_p.push_back(R);
channel_p.push_back(G);
channel_p.push_back(B);
cv::Mat outt;
merge(channel_p, outt);
image_blob = outt;
}
void Inferencer::InitOnnxEnv()
{
auto num_input_nodes = session->GetInputCount();
auto num_output_nodes = session->GetOutputCount();
cout << "Number of inputs = " << num_input_nodes << endl;
cout << "Number of outputs = " << num_output_nodes << endl;
this->input_dims = session->GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
this->output_dims = session->GetOutputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
cout << "input_dims:" << this->input_dims[3] << endl;
cout << "output_dims:" << this->output_dims[3] << endl;
Ort::AllocatorWithDefaultOptions allocator;
auto input_name_ptr = session->GetInputNameAllocated(0, allocator);
this->input_node_names.push_back(input_name_ptr.get());
auto output_name_ptr = session->GetOutputNameAllocated(0, allocator);
this->output_node_names.push_back(output_name_ptr.get());
}
void Inferencer::generateHeatMap(cv::Mat& input, cv::Mat& heatMap, cv::Mat& predMask, cv::Mat& contourMap, cv::Mat& boxMap)
{
float image_threshold = 13.793981552124023;
float pixel_threshold = 13.793981552124023;
float min_val = 2.551008462905884;
float max_val = 27.169368743896484;
cv::Mat det1, det2;
cv::resize(input, det1, cv::Size(256,256), cv::INTER_AREA);
det1.convertTo(det1, CV_32FC3);
Inferencer::preProcess(det1, det2);
cv::Mat blob = cv::dnn::blobFromImage(det2, 1., cv::Size(256,256), cv::Scalar(0, 0, 0), false, true);
cout << "���سɹ�!" << endl;
clock_t startTime, endTime;
auto memory_info = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
vector<Ort::Value> input_tensors;
input_tensors.push_back(Ort::Value::CreateTensor<float>(memory_info, blob.ptr<float>(), blob.total(), input_dims.data(), input_dims.size()));
startTime = clock();
//auto output_tensors = session->Run(Ort::RunOptions{ nullptr }, input_node_names.data(), input_tensors.data(), input_node_names.size(), output_node_names.data(), output_node_names.size());
const char* ch_in = "input";
const char* const* p_in = &ch_in;
const char* ch_out = "output";
const char* const* p_out = &ch_out;
auto output_tensors = session->Run(Ort::RunOptions{ nullptr }, p_in, input_tensors.data(), 1, p_out, 1);
endTime = clock();
assert(output_tensors.size() == 1 && output_tensors.front().IsTensor());
float* floatarr = output_tensors[0].GetTensorMutableData<float>();
cv::Mat anomalyMap = cv::Mat_<float>(256,256);
int k = 0;
for (int i = 0; i < 256; i++)
{
for (int j = 0; j < 256; j++)
{
float val = floatarr[++k];
//cout << val << endl;
anomalyMap.at<float>(i, j) = val;
}
}
cv::Mat norm = ((anomalyMap - pixel_threshold) / (max_val - min_val)) + 0.5;
norm *= 255;
cv::Mat normUint8;
norm.convertTo(normUint8, CV_8UC1);
cv::Mat colorMap;
cv::applyColorMap(normUint8, colorMap, cv::COLORMAP_JET);
cv::imwrite("colormap.jpg", colorMap);
cv::resize(input, input, cv::Size(256,256));
cv::addWeighted(colorMap, 0.4, input, 0.6, 0, heatMap);
cv::imwrite("heatmap.jpg", heatMap);
cv::threshold(anomalyMap, predMask, pixel_threshold, 255, CV_THRESH_BINARY);
predMask.convertTo(predMask, CV_8UC1);
cv::resize(input, contourMap, cv::Size(256,256));
vector<vector<cv::Point>> contours;
cv::findContours(predMask, contours, cv::noArray(), cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);
cv::drawContours(contourMap, contours, -1, cv::Scalar(0, 0, 255), 2);
cv::resize(input, boxMap, cv::Size(256,256));
for (int i = 0; i < contours.size(); i++)
{
cv::Rect rect = cv::boundingRect(contours[i]);
cv::rectangle(boxMap, rect, cv::Scalar(0, 255, 0), 1);
}
cv::imwrite("bad.jpg", boxMap);
}
int main(void)
{
//string onnxpth = "model.onnx";
const char* modelPath = "/home/master/code/code2/model.onnx";
cout << "1111" << endl;
string imgpath = "/home/master/code/code2/011.png";
cv::Mat srcimg = cv::imread(imgpath);
cv::Mat heatMap, predMask, contourMap,boxMap;
cout << "daoda" << endl;
Inferencer myinfer(modelPath);
myinfer.InitOnnxEnv();
myinfer.generateHeatMap(srcimg, heatMap, predMask, contourMap, boxMap);
system("pause");
return 0;
}
inferencer.h
#pragma once
#include<onnxruntime_cxx_api.h>
#include <opencv2/core.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc_c.h>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <assert.h>
#include <vector>
#include <fstream>
using namespace std;
class Inferencer
{
private:
Ort::Session* session;
Ort::Env _env;
void preProcess(const cv::Mat& image, cv::Mat& image_blob);
vector<int64_t> input_dims;
vector<int64_t> output_dims;
vector<char*> input_node_names;
vector<char*> output_node_names;
public:
Inferencer(const char* modelPath);
void InitOnnxEnv();
void generateHeatMap(cv::Mat& input, cv::Mat& heatMap, cv::Mat& predMask, cv::Mat& contourMap, cv::Mat& boxMap);
};
3.安装相关环境
3.1 安装opencv
参考该博主博文https://blog.csdn.net/qq_42950957/article/details/123899581
3.2下载onnxruntime.
https://github.com/microsoft/onnxruntime
通过该链接下载linux版本的即可。
4.编写CMakeList.txt
cmake_minimum_required(VERSION 3.0.0)
project(ov_cpp VERSION 0.1.0 LANGUAGES C CXX)
include(CTest)
enable_testing()
set(CMAKE_CXX_FLAGS "-std=c++11")
include_directories(${INC_DIR})
add_executable(ov_cpp inferencer.cpp)
include(CPack)
find_package(OpenCV)
include_directories(${OpenCV_INCLUDE_DIRS})
target_link_libraries(ov_cpp ${OpenCV_LIBS})
#onnxruntime
set(ONNXRUNTIME_ROOT_PATH /home/master/onnxruntime-linux-x64-1.14.0/)
set(ONNXRUNTIME_INCLUDE_DIRS ${ONNXRUNTIME_ROOT_PATH}/include/)
set(ONNXRUNTIME_LIB ${ONNXRUNTIME_ROOT_PATH}lib/libonnxruntime.so)
# name of executable file and path of source file
include_directories(${ONNXRUNTIME_INCLUDE_DIRS})
target_link_libraries(ov_cpp ${ONNXRUNTIME_LIB})
4.编译
创建build文件夹在下面打开终端
cmake ..
make
生成ov_cpp,运行ov_cpp获得检测结果。