二项式定理的简单运用
pow()函数:
用法:pow(x,y)返回x的y次方
<math.h>
该头文件包括多种与数学有关的函数文件需要提前声明
二次项定理:
初步设计:计算(a+b)的n次方 为了方便操作且简洁将a设置为1,再通过函数进行计算。
对系数的设置:
int coe(int n, int k){
if (k == 0 || n == k )
return 1;
int num1=1, num2=1;
for (int i = 0; i < k; i++)
num1 = num1*(n-i);
for (int i = 1; i <= k; i++)
num2 = num2*i;
return (num1 / num2);
}
1.首先判断二次项中的首尾两项,若条件符合即直接系数为1
2.再由来进行判断和设置。
主函数的设置:
int main(void)
{
FILE*fp;
int n,a=1,m,k=0;
float b;
double sum=0,sum_pow;
if((fp=fopen("BINO.DAT.txt","r"))==NULL){
printf("File open error!\n");
exit(0);}
fp=fopen("BINO.DAT.txt","r");
fscanf(fp,"%d",&m);
while(!feof(fp)){
fscanf(fp,"%f %d",&b,&n);
while(k<=n){
sum=sum+coe(n,k)*pow(b,k);
k++;}
sum_pow=pow(1+b,n);
printf("Binomial theorem and pow() ooutput\na=1\t b=%4.2f\t n=%d\n",b,n);
printf("(a+b)^n\t\t\t(a+b)^n\n");
printf("From the\t\tFrom the\n");
printf("pow() function\t binomial theorem\n");
printf("%f\t\t%f\n",sum_pow,sum);
}
fclose(fp);
system("pause");
return 0;
}
主要是运用了pow()函数来进行处理使得整个结果得以输出。
且包括了文件的读写处理,记得文件的关闭。
其中主函数中的显示界面不够完善。显得过于冗杂且不好看。
对于界面展示中存在很多的不足,再进一步的运用上会对a进行开放处理。