C语言函数的基础运用-----二项式定理的运用

二项式定理的简单运用

pow()函数:
用法:pow(x,y)返回x的y次方

<math.h>
该头文件包括多种与数学有关的函数文件需要提前声明
二次项定理:
二项式定理
初步设计:计算(a+b)的n次方 为了方便操作且简洁将a设置为1,再通过函数进行计算。

对系数的设置:

int coe(int n, int k){
    if (k == 0 || n == k )
        return 1;
    int num1=1, num2=1;
    for (int i = 0; i < k; i++)
        num1 = num1*(n-i);
    for (int i = 1; i <= k; i++)
        num2 = num2*i;
    return (num1 / num2);
}

1.首先判断二次项中的首尾两项,若条件符合即直接系数为1
2.再由二次项定理系数公式来进行判断和设置。

主函数的设置:

int main(void)
{
	FILE*fp;
	int n,a=1,m,k=0;
	float b;
	double sum=0,sum_pow;
	if((fp=fopen("BINO.DAT.txt","r"))==NULL){
	printf("File open error!\n");
	exit(0);}
	fp=fopen("BINO.DAT.txt","r");
	fscanf(fp,"%d",&m);
    while(!feof(fp)){
    	fscanf(fp,"%f %d",&b,&n);
	    while(k<=n){
			sum=sum+coe(n,k)*pow(b,k);
			k++;}
		sum_pow=pow(1+b,n);
   	 	printf("Binomial theorem and pow() ooutput\na=1\t    b=%4.2f\t    n=%d\n",b,n);
		printf("(a+b)^n\t\t\t(a+b)^n\n");
		printf("From the\t\tFrom the\n");
		printf("pow() function\t    binomial theorem\n");
		printf("%f\t\t%f\n",sum_pow,sum);
}
	fclose(fp);
	system("pause");
	return 0;
}

主要是运用了pow()函数来进行处理使得整个结果得以输出。
且包括了文件的读写处理,记得文件的关闭
其中主函数中的显示界面不够完善。显得过于冗杂且不好看。
在这里插入图片描述
对于界面展示中存在很多的不足,再进一步的运用上会对a进行开放处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个很不专业的小码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值