基础网络结构
文章平均质量分 89
weixin_51363643
这个作者很懒,什么都没留下…
展开
-
Vision Transformer
的全部过程可以表示如下:多头注意力机制就是将原本处理的向量分割为多个Head进行处理,这也是attention结构可以进行并行加速的一个方面。多头注意力机制在保持参数总量不变的情况下,将同样的query, key和value映射到原来的高维空间(Q,K,V)的不同子空间中进行自注意力的计算,最后再合并不同子空间中的注意力信息。结构与等结构的拼接就可以形成的基础结构。原创 2024-06-03 20:58:45 · 585 阅读 · 0 评论 -
SSD源码解析
借鉴的代码使用的是resnet50作为backbone,具体网络结构如下所示,舍弃conv_5x结构及其之后的网络,并且改变conv_4中第一个block的卷积核的stride,从2->1。因此在backbone中,用net.children()取前7个,同时系应该conv_4中block的步距。forward中传入的参数:bboxes_in是预测的回归参数,scores_in是预测的类别参数。之后采用论文中的方法获取负样本,具体代码编写的方法是英伟达在实现过程中编写的代码方法。原创 2024-04-22 21:43:37 · 429 阅读 · 0 评论 -
SSD算法解析
SSD是one-stage 经典目标检测网络。Faster RCNN存在的问题:1.对小目标的检测效果很差2.模型大,检测速度较慢看文章的时候,好像文章都默认s2(stride=2)的时候,padding=1, s1(stride=1)时,padding=0SSD采用VGG16作为基础模型,并且做了以下修改,如下图所示分别将VGG16的全连接层FC6和FC7转换成 3x3 的卷积层 Conv6和 1x1 的卷积层Conv7去掉所有的Dropout层和FC8层。原创 2024-04-11 22:23:47 · 997 阅读 · 0 评论 -
Faster R-CNN
图展示了python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构,可以清晰的看到该网络对于一副任意大小PxQ的图像:首先缩放至固定大小MxN,然后将MxN图像送入网络;而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成positive anchors和对应bounding box regression偏移量,然后计算出proposals;原创 2024-04-10 22:11:08 · 373 阅读 · 1 评论 -
ResNet解析
我们将H(x)看作一个由部分堆叠的层(并不一定是全部的网络)来拟合的底层映射,其中x是这些层的输入。假设多个非线性层能够逼近复杂的函数,这就等价于这些层能够逼近复杂的残差函数,例如, H(x)−x(假设输入和输出的维度相同)。值得注意的是,虽然层的深度明显增加了,但是152层ResNet的计算复杂度(113亿个FLOPs)仍然比VGG-16(153 亿个FLOPs)和VGG-19(196亿个FLOPs)的小很多。在一个的常规的比较浅的模型上添加新的层,而新的层是基于 identity mapping 的。原创 2024-03-27 11:18:32 · 932 阅读 · 0 评论 -
关于卷积神经网络中一些名词的解释合集(Feature map,filter,上下采样等)
在cnn的每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起(像豆腐皮一样),其中每一个称为一个feature map。输入层:在输入层,如果是灰度图片,那就只有一个feature map;如果是彩色图片,一般就是3个feature map(红绿蓝)。其它层:层与层之间会有若干个卷积核(kernel)(也称为过滤器),上一层每个feature map跟每个卷积核做卷积,都会产生下一层的一个feature map,有N个卷积核,下层就会产生N个feather map。原创 2024-03-22 14:18:57 · 798 阅读 · 0 评论 -
GoogLeNet网络结构(自用)
深度层面,就是增加网络的层数,而宽度方面,就是增加每层的filter bank尺寸。所以考虑,希望在增加网络深度和宽度的同时减少参数,Inception架构的主要想法是考虑【怎样用密集模块来近似最优的局部稀疏结构 】,由此产生了inception module。最终的结果运行时间很长,最好的达到了0.769,目前还没有优化,之后可以试着优化一下。1.更大的尺寸通常意味着更多的参数,也更容易导致网络的过拟合,尤其是样本不足的情况下。2.即使均匀的增加网络每层的尺寸,也会急剧(指数形式)增加总的运算量。原创 2024-03-21 14:43:59 · 685 阅读 · 1 评论