题目:输入两个正整数m和n,求其最大公约数和最小公倍数。
程序分析:
(1)最小公倍数=输入的两个数之积除于它们的最大公约数,关键是求出最大公约数;
(2)求最大公约数用辗转相除法(又名欧几里德算法)
1)证明:设c是a和b的最大公约数,记为c=gcd(a,b),a>=b,
令r=a mod b
设a=kc,b=jc,则k,j互素,否则c不是最大公约数
据上,r=a-mb=kc-mjc=(k-mj)c
可知r也是c的倍数,且k-mj与j互素,否则与前述k,j互素矛盾,
由此可知,b与r的最大公约数也是c,即gcd(a,b)=gcd(b,a mod b),得证。
2)算法描述:
第一步:a ÷ b,令r为所得余数(0≤r 第二步:互换:置 a←b,b←r,并返回第一步。
#include<stdio.h>
//int main()
//{
// int a, b, t, r, n;
// printf("请输入两个数字:\n");
// scanf_s("%d %d", &a, &b);
// if (a < b)
// {
// t = b; b = a; a = t;
// }
// r = a % b;
// n = a * b;
// while (r != 0)
// {
// a = b;
// b = r;
// r = a % b;
// }
// printf("这两个数的最大公约数是%d,最小公倍数是%d\n", b, n / b);
//
// return 0;
//}
void f14(int m, int n) {
int i = 0;
int num = 1;
int temp1 = m, temp2 = n;//用两个变量寄存m,n的值
int min = m < n ? m : n;//求得m,n中的较小值
for (i = 2; i <= min; i++) {
if ((m % i == 0) && (n % i == 0)) {
//printf("%d\n",i);
num *= i;
m = m / i;
n = n / i;
min = min / i;
i = 1;//i的还原,不然在执行一次循环体后,i++=3,下次循环时,会将i=2这个商给跳过,出现问题
//printf("%d\n",min);
}
}
printf("最大公约数为:%d\n", num);
printf("最小公倍数为:%d\n", temp1 * temp2 / num);
}
int main() {
printf("请输入两个数:");
int m, n;
scanf_s(" %d %d", &m, &n);
f14(m, n);
return 0;
}