实例016

题目:输入两个正整数m和n,求其最大公约数和最小公倍数。

程序分析:

(1)最小公倍数=输入的两个数之积除于它们的最大公约数,关键是求出最大公约数;

(2)求最大公约数用辗转相除法(又名欧几里德算法)

1)证明:设c是a和b的最大公约数,记为c=gcd(a,b),a>=b,
令r=a mod b
设a=kc,b=jc,则k,j互素,否则c不是最大公约数
据上,r=a-mb=kc-mjc=(k-mj)c
可知r也是c的倍数,且k-mj与j互素,否则与前述k,j互素矛盾,
由此可知,b与r的最大公约数也是c,即gcd(a,b)=gcd(b,a mod b),得证。

2)算法描述:

第一步:a ÷ b,令r为所得余数(0≤r 第二步:互换:置 a←b,b←r,并返回第一步。

#include<stdio.h>

//int main()
//{
//    int a, b, t, r, n;
//    printf("请输入两个数字:\n");
//    scanf_s("%d %d", &a, &b);
//    if (a < b)
//    {
//        t = b; b = a; a = t;
//    }
//    r = a % b;
//    n = a * b;
//    while (r != 0)
//    {
//        a = b;
//        b = r;
//        r = a % b;
//    }
//    printf("这两个数的最大公约数是%d,最小公倍数是%d\n", b, n / b);
//
//    return 0;
//}



void f14(int m, int n) {
    int i = 0;
    int num = 1;
    int temp1 = m, temp2 = n;//用两个变量寄存m,n的值
    int min = m < n ? m : n;//求得m,n中的较小值

    for (i = 2; i <= min; i++) {
        if ((m % i == 0) && (n % i == 0)) {
            //printf("%d\n",i);
            num *= i;
            m = m / i;
            n = n / i;
            min = min / i;
            i = 1;//i的还原,不然在执行一次循环体后,i++=3,下次循环时,会将i=2这个商给跳过,出现问题
            //printf("%d\n",min);
        }
    }
    printf("最大公约数为:%d\n", num);
    printf("最小公倍数为:%d\n", temp1 * temp2 / num);
}
int main() {
    printf("请输入两个数:");
    int m, n;
    scanf_s(" %d %d", &m, &n);
    f14(m, n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值