深度学习 实验一 numpy的使用

numpy 的array操作

1.导入numpy库

import numpy as np

2.建立一个一维数组 a 初始化为[4,5,6], (1)输出a 的类型(type)(2)输出a的各维度的大小(shape)(3)输出 a的第一个元素(值为4)

a = np.array([4,5,6])
# 输出类型
print(type(a))
# 输出各维度大小
print(a.shape) # 或者np.shape(a)
print(a[0])

3.建立一个二维数组 b,初始化为 [ [4, 5, 6],[1, 2, 3]] (1)输出各维度的大小(shape)(2)输出 b(0,0),b(0,1),b(1,1) 这三个元素(对应值分别为4,5,2)

# 建立一个二维数组b
b = np.array([[4,5,6],[1,2,3]])
# 输出各维度大小
print(np.shape(b))
# 输出数值
print("{0},{1},{2}".format(b[0,0],b[0,1],b[1,1]))

4. (1)建立一个全0矩阵 a, 大小为 3x3; 类型为整型(提示: dtype = int)(2)建立一个全1矩阵b,大小为4x5; (3)建立一个单位矩阵c ,大小为4x4; (4)生成一个随机数矩阵d,大小为 3x2.

# a = np.zeros([3,3])  # 全0矩阵 3*3
a = np.zeros((3,3),dtype=int) # 全0矩阵 3*3
b = np.ones([4,5])  # 全1矩阵 4*5 
c = np.eye(4)  # 单位矩阵 4*4 或者用identity
# d = np.random.randint(0,10,size=(3,2)) # 随机数矩阵 3*2 0-10
d = np.random.rand(3,2)
print(a)
print(b)
print(c)
print(d)

5. 建立一个数组 a,(值为[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] ) ,(1)打印a; (2)输出 下标为(2,3),(0,0) 这两个数组元素的值

# 创建[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
a = np.arange(1,13).reshape(3,4) # 也可以直接创建np.array([...])
print(a)
print(a[2,3])
print(a[0,0])

6.把上一题的 a数组的 0到1行 2到3列,放到b里面去,(此处不需要从新建立a,直接调用即可)(1),输出b;(2) 输出b 的(0,0)这个元素的值

b = a[0:2,1:3] # 截取数据 0到1行,2到3列
print(b)
print(b[0,0])

7. 把第5题中数组a的最后两行所有元素放到 c中,(提示: a[1:2, :])(1)输出 c ; (2) 输出 c 中第一行的最后一个元素(提示,使用 -1 表示最后一个元素)

c = a[1:3,:] # 最后两行元素的复制 # 也可是c = a[1:3]
print(c)
print(c[1,-1]) # 输出第一行最后一个元素

8.建立数组a,初始化a为[[1, 2], [3, 4], [5, 6]],输出 (0,0)(1,1)(2,0)这三个元素(提示: 使用 print(a[[0, 1, 2], [0, 1, 0]]) )

a = np.arange(1,7).reshape(3,2) # [[1 2] [3 4] [5 6]]
print(a)
print(a[[0,1,2],[0,1,0]]) # 输出三个元素 [1 4 5]

9.建立矩阵a ,初始化为[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],输出(0,0),(1,2),(2,0),(3,1) (提示使用 b = np.array([0, 2, 0, 1]) print(a[np.arange(4), b]))

a = np.arange(1,13).reshape(4,3)
print(a)
b = np.array([0,2,0,1])
print(a[np.arange(4),b])

10.对9 中输出的那四个元素,每个都加上10,然后重新输出矩阵a.(提示: a[np.arange(4), b] += 10 )

a = a[np.arange(4),b] # 对9中输出的那四个元素,每个都加上10
a += 10
print(a)

array 的数学运算

11. 执行 x = np.array([1, 2]),然后输出 x 的数据类型

x = np.array([1,2])
# 输出x的数据类型
print(x.dtype)

12.执行 x = np.array([1.0, 2.0]) ,然后输出 x 的数据类类型

x = np.array([1.0,2.0])
# 输出x的数据类型
print(x.dtype)

13.执行 x = np.array([[1, 2], [3, 4]], dtype=np.float64) ,y = np.array([[5, 6], [7, 8]], dtype=np.float64),然后输出 x+y ,和 np.add(x,y)

x = np.array([[1, 2], [3, 4]], dtype=np.float64)
y = np.array([[5, 6], [7, 8]], dtype=np.float64)
print(x)
print(y)
print(x+y) # 矩阵加
print(np.add(x,y))

14. 利用 13题目中的x,y 输出 x-y 和 np.subtract(x,y)

print(x-y)  # 矩阵减
print(np.subtract(x,y))

15. 利用13题目中的x,y 输出 x*y ,和 np.multiply(x, y) 还有 np.dot(x,y),比较差异。然后自己换一个不是方阵的试试。

print(x*y) # 对应乘
print(np.multiply(x,y)) # 对应相乘
print(np.dot(x,y)) # 矩阵相乘

16. 利用13题目中的x,y,输出 x / y .(提示 : 使用函数 np.divide())

print(x/y) # 对应除
print(np.divide(x,y)) # 对应除

17. 利用13题目中的x,输出 x的 开方。(提示: 使用函数 np.sqrt() )

print(np.sqrt(x)) # 开方

18.利用13题目中的x,y ,执行 print(x.dot(y)) 和 print(np.dot(x,y))

print(x.dot(y)) # 矩阵相乘
print(np.dot(x,y))

19.利用13题目中的 x,进行求和。提示:输出三种求和 (1)print(np.sum(x)): (2)print(np.sum(x,axis =0 )); (3)print(np.sum(x,axis = 1))

print(x)
print(np.sum(x)) # 全部和
print(np.sum(x, axis=0)) # 列相加
print(np.sum(x,axis = 1)) # 行求和

20.利用13题目中的 x,进行求平均数(提示:输出三种平均数(1)print(np.mean(x)) (2)print(np.mean(x,axis = 0))(3) print(np.mean(x,axis =1)))

print(np.mean(x)) # 平均值
print(np.mean(x, axis=0)) # 列求平均
print(np.mean(x, axis=1)) # 行求平均

21.利用13题目中的x,对x 进行矩阵转置,然后输出转置后的结果,(提示: x.T 表示对 x 的转置)

print(x)
print(x.T) 

22.利用13题目中的x,求e的指数(提示: 函数 np.exp())

print(np.exp(x)) # e的指数

23.利用13题目中的 x,求值最大的下标(提示(1)print(np.argmax(x)) ,(2) print(np.argmax(x, axis =0))(3)print(np.argmax(x),axis =1))

print(np.argmax(x))
print(np.argmax(x,axis=0)) # 列最大值的下标
print(np.argmax(x,axis=1)) # 行最大值的下标

24,画图,y=x*x 其中 x = np.arange(0, 100, 0.1) (提示这里用到 matplotlib.pyplot 库)

# 需要导入matplotlib.pyplot库
import matplotlib.pyplot as plt # 放在所有代码最上面
x = np.arange(0,100,0.1)
y = x*x
plt.figure()
plt.xlabel("x")
plt.ylabel("y")
plt.plot(x,y)
plt.show()

图像:

在这里插入图片描述

25.画图。画正弦函数和余弦函数, x = np.arange(0, 3 * np.pi, 0.1)(提示:这里用到 np.sin() np.cos() 函数和 matplotlib.pyplot 库)

# 画图
# 画正弦函数和余弦函数
x = np.arange(0,3*np.pi,0.1)
y = np.sin(x)
plt.xlabel("x")
plt.ylabel("sin(x)/cos(x)")
plt.plot(x,y,c="r") # 红色
y = np.cos(x)
plt.plot(x,y,c="b") # 蓝色
plt.show()

图像:

红色是正弦函数,蓝色是余弦函数

全部代码(对应前面的题目):

# 1.
import numpy as np
import matplotlib.pyplot as plt

# 2.
print("2--------------")
a = np.array([4,5,6])
# 输出类型
print(type(a))
# 输出各维度大小
print(a.shape)
print(a[0])

# 3.
print("3---------------")
# 建立一个二维数组b
b = np.array([[4,5,6],[1,2,3]])
# 输出各维度大小
print(np.shape(b))
# 输出数值
print("{0},{1},{2}".format(b[0,0],b[0,1],b[1,1]))

# 4.
print("4-------------")
# a = np.zeros([3,3])  # 全0矩阵 3*3
a = np.zeros((3,3),dtype=int) # 全0矩阵 3*3
b = np.ones([4,5])  # 全1矩阵 4*5 
c = np.eye(4)  # 单位矩阵 4*4 或者用identity
# d = np.random.randint(0,10,size=(3,2)) # 随机数矩阵 3*2 0-10
d = np.random.rand(3,2)
print(a)
print(b)
print(c)
print(d)

# 5.
print("5-------------")
a = np.arange(1,13).reshape(3,4) # 创建[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
print(a)
print(a[2,3])
print(a[0,0])

# 6.
print("6------------")
b = a[0:2,1:3] # 截取数据 0到1行,2到3列
print(b)
print(b[0,0])

# 7.
print("7---------")
c = a[1:3,:] # 最后两行元素的复制 # 也可是c = a[1:3]
print(c)
print(c[1,-1]) # 输出第一行最后一个元素

# 8.
print("8----------")
a = np.arange(1,7).reshape(3,2) # [[1 2] [3 4] [5 6]]
print(a)
print(a[[0,1,2],[0,1,0]]) # 输出三个元素 [1 4 5]

#9.
print("9-----------------")
a = np.arange(1,13).reshape(4,3)
print(a)
b = np.array([0,2,0,1])
print(a[np.arange(4),b])

# 10.
print("10--------------")
a = a[np.arange(4),b] # 对9中输出的那四个元素,每个都加上10
a += 10
print(a)

# 11.
print("11------------")
x = np.array([1,2])
# 输出x的数据类型
print(x.dtype)

# 12.
print("12------------")
x = np.array([1.0,2.0])
# 输出x的数据类型
print(x.dtype)

# 13.
print("13------------")
x = np.array([[1, 2], [3, 4]], dtype=np.float64)
y = np.array([[5, 6], [7, 8]], dtype=np.float64)
print(x)
print(y)
print(x+y) # 矩阵加
print(np.add(x,y))

# 14.
print("14---------")
print(x-y)  # 矩阵减
print(np.subtract(x,y))

# 15.
print("15---------")
print(x*y) # 对应乘
print(np.multiply(x,y)) # 对应相乘
print(np.dot(x,y)) # 矩阵相乘

# 16.
print("16---------")
print(x/y) # 对应除
print(np.divide(x,y)) # 对应除

# 17.
print("17---------")
print(np.sqrt(x)) # 开方

# 18.
print("18---------")
print(x.dot(y)) # 矩阵相乘
print(np.dot(x,y))

# 19.
print("19-----------")
print(x)
print(np.sum(x)) # 全部和
print(np.sum(x, axis=0)) # 列相加
print(np.sum(x,axis = 1)) # 行求和

# 20.
print("20------------")
print(np.mean(x)) # 平均值
print(np.mean(x, axis=0)) # 列求平均
print(np.mean(x, axis=1)) # 行求平均

# 21. 
# 转置
print("21-----------")
print(x)
print(x.T) 

# 22.
print("22------------")
print(np.exp(x)) # e的指数

# 23. 
# 求值最大的下标
print("23-------------")
print(x)
print(np.argmax(x))
print(np.argmax(x,axis=0)) # 列最大值的下标
print(np.argmax(x,axis=1)) # 行最大值的下标

# 24.
x = np.arange(0,100,0.1)
y = x*x
plt.figure()
plt.xlabel("x")
plt.ylabel("y")
plt.plot(x,y)
plt.show()

# 25.
# 画图
# 画正弦函数和余弦函数
x = np.arange(0,3*np.pi,0.1)
y = np.sin(x)
plt.xlabel("x")
plt.ylabel("sin(x)/cos(x)")
plt.plot(x,y,c="r") # 红色
y = np.cos(x)
plt.plot(x,y,c="b") # 蓝色
plt.show()

输出结果:

2--------------
<class 'numpy.ndarray'>
(3,)
4
3---------------
(2, 3)
4,5,2
4-------------
[[0 0 0]
 [0 0 0]
 [0 0 0]]
[[1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1.]]
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]]
[[0.73736886 0.7253961 ]
 [0.31270932 0.31438882]
 [0.22789981 0.13760176]]
5-------------
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
12
1
6------------
[[2 3]
 [6 7]]
2
7---------
[[ 5  6  7  8]
 [ 9 10 11 12]]
12
8----------
[[1 2]
 [3 4]
 [5 6]]
[1 4 5]
9-----------------
[[ 1  2  3]
 [ 4  5  6]
 [ 7  8  9]
 [10 11 12]]
[ 1  6  7 11]
10--------------
[11 16 17 21]
11------------
int32
12------------
float64
13------------
[[1. 2.]
 [3. 4.]]
[[5. 6.]
 [7. 8.]]
[[ 6.  8.]
 [10. 12.]]
[[ 6.  8.]
 [10. 12.]]
14---------
[[-4. -4.]
 [-4. -4.]]
[[-4. -4.]
 [-4. -4.]]
15---------
[[ 5. 12.]
 [21. 32.]]
[[ 5. 12.]
 [21. 32.]]
[[19. 22.]
 [43. 50.]]
16---------
[[0.2        0.33333333]
 [0.42857143 0.5       ]]
[[0.2        0.33333333]
 [0.42857143 0.5       ]]
17---------
[[1.         1.41421356]
 [1.73205081 2.        ]]
18---------
[[19. 22.]
 [43. 50.]]
[[19. 22.]
 [43. 50.]]
19-----------
[[1. 2.]
 [3. 4.]]
10.0
[4. 6.]
[3. 7.]
20------------
2.5
[2. 3.]
[1.5 3.5]
21-----------
[[1. 2.]
 [3. 4.]]
[[1. 3.]
 [2. 4.]]
22------------
[[ 2.71828183  7.3890561 ]
 [20.08553692 54.59815003]]
23-------------
[[1. 2.]
 [3. 4.]]
3
[1 1]
[1 1]

x与y的关系图
红色是正弦函数,蓝色是余弦函数

如有错误与建议,望告知!!!(将于下篇文章更正)
请多多关注我!!!谢谢!!!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值