- 博客(28)
- 收藏
- 关注
原创 NNDL 实验八 网络优化与正则化(3)不同优化算法比较
这次主要写了一些优化算法的比较,当学习率在迭代早期降得较快且当前解依然不佳时,AdaGrad算法在迭代后期由于学习率过小,可能较难找到一个有用的解。RMSProp算法对AdaGrad算法做了一些改进,并且结合了momentum中指数加权移动平均的思想。AdaDelta算法跟RMSProp算法的不同之处在于使用来替代学习率η . Adam算法在RMSProp算法基础上对小批量随机梯度也做了指数加权移动平均。优化算法。
2022-12-10 19:25:26 291
原创 NNDL 作业11:优化算法比较
最底下是弧线,所以有全局最小值 底部弧度很小,下降方向基本沿着y轴,很多地方没有指向(0,0) 选择合适的learning rate比较困难 - 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了SGD容易收敛到局部最优,并且在某些情况下可能被困在鞍点SGD方法的一个缺点是,其更新方向完全依赖于当前的batch,因而其更新十分不稳定。解决这一问题的一个简单的做法便是引入m
2022-12-05 22:11:58 162
原创 NNDL 实验七 循环神经网络(3)LSTM的记忆能力实验
使用LSTM模型重新进行数字求和实验,验证LSTM模型的长程依赖能力。使用第6.1.2.4节中定义Model_RNN4SeqClass模型,并构建 LSTM 算子.只需要实例化 LSTM ,并传入Model_RNN4SeqClass模型,就可以用 LSTM 进行数字求和实验。得到以下结果: 这里我们可以将自己实现的SRN和Paddle框架内置的SRN返回的结果进行打印展示,实现代码如下得到以下结果:可以看到,自己实现的LSTM由于没有考虑多层因素,因此没有层次这个维度,因此其输
2022-12-03 22:11:20 467
原创 NNDL 作业10:第六章课后题(LSTM | GRU)
这次的作业主要写的就是LSTM和GRU网络,我感觉这两个网络差不太多,其实也是,都是为了解决RNN的长程依赖问题,在上面的作业里对GRU和LSTM也进行了推导和比较,推导的过程还是有些难度,很多式子要看好久才能明白,这次的实验也借鉴了很多别人的文章,在接下来的几次实验中要更加注意。Wx_k+bWx_k+
2022-11-28 22:44:26 221
原创 NNDL 实验七 循环神经网络(2)梯度爆炸实验
范数(norm)是线性代数中的一个基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式,它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。划重点:非负性、齐次性、三角不等式。外文名:n o r m normnorm作用:常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。记号:f ( x ) = ∥ x ∥我们常用表示具体范数,其中下标s y m b symbsymb是区分范数的助记符号,如、、、范数。
2022-11-24 17:32:28 466
原创 NNDL 实验六 卷积神经网络(5)使用预训练resnet18实现CIFAR-10分类
NNDL 实验六 卷积神经网络(5)使用预训练resnet18实现CIFAR-10分类
2022-11-12 20:44:36 809
原创 NNDL 实验五 前馈神经网络(3)鸢尾花分类
这个明显比学习率是0.2的时候差太多了,不可取。再把学习率lr=0.3得到以下结果:结果更差了,这说明4个神经元不如6个神经元,那我们再把神经元改成8个lr=0.2:这个效果也不好,再改成lr=0.5发现效果不如lr=0.7了,经过多次测试后,找到了结果,在8个神经元lr=0.7的时候达到了最好的结果这次的实验是用前馈神经网络对iris进行分类,而在做这次实验之前,已经做过了SVM和softmax对iris的分类,所以正好可以很方便的对这三种方法对iris分类进行对比。
2022-10-14 00:42:10 1009
原创 NNDL 作业4:第四章课后题
这次的作业有三个是上次做过的,但是毕竟上次的实验是整体的,并没有太过于深究这些问题,这次的作业中根据上次实验的基础增加了一些新的内容,这样可以对这些问题理解更深彻。关于这次作业最让我不懂的就是习题4-2,有没有一种方法可以让正确率达到100%呢?而这次作业最大的收获就是反向传播算法中参数的设置问题,虽然上次实验中已经得到权值和偏置不能全为0的结论,并且上手实验,但是这次的作业补充了理论知识,
2022-10-08 19:41:18 811 3
原创 NNDL 作业3:分别使用numpy和pytorch实现FNN例题
return aprint("正向计算:o1 ,o2")print("损失函数:均方误差")# 反向传播print("反向传播:误差传给每个权值")# 步长step = 5print("=====输入值:x1, x2;真实输出值:y1, y2=====")print("=====更新前的权值=====")print("=====第" + str(i) + "轮=====")print("更新后的权值")print("=====输入值:x1, x2;
2022-10-02 20:42:46 379
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人