作业12:第七章课后题

习题7-1 在小批量梯度下降中,试分析为什么学习率要和批量大小成正比

在小批量梯度下降中有:
5
其中 g t = δ K g_t = \frac{\delta }{K} gt=Kδ ,则有: θ t = θ t − 1 − δ K α θ_t = θ_{t-1} - \frac{\delta }{K}α θt=θt1Kδα
因此我们要使得参数最优,则 α K \frac{\alpha}{K} Kα 为最优的时候的常数,故学习率要和批量大小成正比。

习题7-2 在Adam算法中,说明指数加权平均的偏差修正的合理性

0

习题7-9 证明在标准的随机梯度下降中,权重衰减正则化和L_{2}正则化的效果相同.并分析这一结论在动量法和Adam算法中是否依然成立

2
zhengming
分析这一结论在动量法和Adam算法中是否成立?

L2正则化梯度更新的方向取决于最近一段时间内梯度的加权平均值。
当与自适应梯度相结合时(动量法和Adam算法),
L2正则化导致导致具有较大历史参数 (和/或) 梯度振幅的权重被正则化的程度小于使用权值衰减时的情况。

总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值