前言:crq开的基础图论里LCA没学过,所以就打算趁机学一下。
学习目标:
LCA专题训练
学习内容:
1、 TZOJ 5701: 数据结构实验:最近公共祖先
2、 TZOJ 6579: 祖孙询问
3、 TZOJ 6578: 点的距离2
4、 TZOJ 6532: 次小生成树
5、 TZOJ 6577: 暗的连锁
题目一:
没啥好说的倍增LCA模板题
这里我用的是dfs构建倍增数组,实际上用bfs构建更安全,不容易爆栈。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const int N = 10000;
struct node
{
int u, v, next;
}edge[N];
int cnt = 1;int n,root;
int head[N], deep[N], f[N][20];
int pre[N];
int findx(int x)
{
return pre[x] == x ? x : findx(pre[x]);
}
void addedge(int x, int y)
{
edge[cnt].u = x;
edge[cnt].v = y;
edge[cnt].next = head[x];
head[x] = cnt++;
}
void build_tree(int p)
{
for (int i = head[p]; i != -1; i = edge[i].next)
{
int will = edge[i].v;
if (deep[will] == 0)
{
deep[will] = deep[p] + 1;
f[will][0] = p;
build_tree(will);
}
}
}
void init_step()
{
for (int i = 1; i <= 19; i++)
{
for (int j = 1; j <= n; j++)
{
f[j][i] = f[f[j][i - 1]][i - 1];
}
}
}
int LCA(int x, int y)
{
if (deep[x] < deep[y])swap(x, y);
for (int i = 19; i >= 0; i--)
{
if (deep[f[x][i]] >= deep[y])
{
x = f[x][i];
}
}
if (x == y)return y;
for (int i = 19; i >= 0; i--)
{
if (f[x][i] != f[y][i])
{
x = f[x][i], y = f[y][i];
}
}
return f[x][0];
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)head[i] = -1,pre[i]=i;
for (int i = 1; i <= n; i++)
{
int u, num;
scanf("%d %d", &u,&num);
root = u;
while (num--)
{
int v;
scanf("%d", &v);
addedge(u, v);
addedge(v, u);
pre[v] = u;
}
}
root = findx(root);
deep[root] = 1;
//cout << root << endl;
//cout << "-------" << endl;
build_tree(root);
init_step();
int m;
scanf("%d",&m);
for (int i = 1; i <= m; i++)
{
int x, y;
scanf("%d %d", &x, &y);
printf("%d %d = %d\n", x, y, LCA(x, y));
}
}
题目二:
使用倍增LCA也可以在O(nlogn)的时间复杂度下求解;但是如果我们使用tarjan算法的可以在O(n)的时间复杂度完成求解
#include<bits/stdc++.h>
using namespace std;
const int N=40005;
vector<int>G[N];
int depth[N],fa[N][16],q[N];
void bfs(int root)
{
memset(depth,0x3f,sizeof depth);
depth[0]=0;depth[root]=1;
int hh=0,tt=0;
q[0]=root;
while(hh<=tt)
{
int t=q[hh++];
for(auto i:G[t])
{
if(depth[i]>depth[t]+1)
{
depth[i]=depth[t]+1;
q[++tt]=i;
fa[i][0]=t;
for(int k=1;k<=15;k++)
{
fa[i][k]=fa[fa[i][k-1]][k-1];
}
}
}
}
}
int lca(int a,int b)
{
if(depth[a]<depth[b])swap(a,b);
for(int k=15;k>=0;k--)
{
if(depth[fa[a][k]]>=depth[b])
{
a=fa[a][k];
}
}
if(a==b)return b;
for(int k=15;k>=0;k--)
{
if(fa[a][k]!=fa[b][k])
{
a=fa[a][k];
b=fa[b][k];
}
}
return fa[a][0];
}
int main()
{
int n,root;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int a,b;
scanf("%d %d",&a,&b);
if(b==-1)root=a;
else
{
G[a].push_back(b);
G[b].push_back(a);
}
}
bfs(root);
int m;
scanf("%d",&m);
while(m--)
{
int a,b;
scanf("%d %d",&a,&b);
int p=lca(a,b);
if(a==p)cout<<1<<endl;
else if(b==p)cout<<2<<endl;
else cout<<0<<endl;
}
}
题目三
这里使用tarjan算法求解
#include<bits/stdc++.h>
using namespace std;
const int N=10005;
typedef pair<int,int>pii;
vector<pii>G[N];
vector<pii>query[N*2];
int res[N*2],depth[N],pre[N],st[N];
void dfs(int u,int fa)
{
for(auto i:G[u])
{
int v=i.first,d=i.second;
if(v!=fa)
{
depth[v]=depth[u]+d;
dfs(v,u);
}
}
}
int findx(int x)
{
return x==pre[x]?x:findx(pre[x]);
}
void tarjan(int u)
{
st[u]=1;
for(auto i:G[u])
{
int v=i.first;
if(!st[v])
{
tarjan(v);
pre[v]=u;
}
}
for(auto i:query[u])
{
int v=i.first,id=i.second;
if(st[v]==2)
{
int anc=findx(v);
res[id]=depth[u]+depth[v]-2*depth[anc];
}
}
st[u]=2;
}
int main()
{
int n,m;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)pre[i]=i;
for(int i=1;i<n;i++)
{
int x,y,d;
scanf("%d %d %d",&x,&y,&d);
G[x].push_back({y,d});
G[y].push_back({x,d});
}
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d %d",&x,&y);
query[x].push_back({y,i});
query[y].push_back({x,i});
}
dfs(1,-1);
tarjan(1);
for(int i=1;i<=m;i++)printf("%d\n",res[i]);
}
题目四
大难题QAQ,对于我这种蒟蒻来说也太难了
1.先求出原方案的最小生成树最值。
2.对说生成的最小生成树进行构图。
【结论:有至少一个(严格)次小生成树,和最小生成树之间只有一条边的差异。】
3.对以上结论对说进行倍增优化,将所有的两点之间的最大边和次大边进行更新即可。
4.将未在生成树的边逐一加入,最后取最小的生成树。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int,int>pii;
const int N=100005;
const int inf=0x3f3f3f3f;
inline int read()
{
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*f;
}
struct node
{
int a,b;
int c;
bool used;
bool operator<(const node &t)const
{
return c<t.c;
}
}edge[N*3];
int pre[N],n,m,depth[N],fa[N][17];
int d1[N][17],d2[N][17];
vector<pii>G[N];
inline int findx(int x)
{
return x==pre[x]?x:findx(pre[x]);
}
LL kruskal()
{
LL res=0;
sort(edge+1,edge+1+m);
for(int i=1;i<=m;i++)
{
int a=findx(edge[i].a),b=findx(edge[i].b),c=edge[i].c;
if(a!=b)
{
pre[a]=b;
res+=c;
edge[i].used=true;
}
}
return res;
}
void build()
{
for(int i=1;i<=m;i++)
{
if(edge[i].used)
{
G[edge[i].a].push_back({edge[i].b,edge[i].c});
G[edge[i].b].push_back({edge[i].a,edge[i].c});
}
}
}
void bfs()
{
memset(depth,0x3f,sizeof depth);
queue<int>q;
depth[1]=1;depth[0]=0;
q.push(1);
while(!q.empty())
{
int u=q.front();q.pop();
for(auto i:G[u])
{
int v=i.first,w=i.second;
if(depth[v]>depth[u]+1)
{
depth[v]=depth[u]+1;
q.push(v);
fa[v][0]=u;
d1[v][0]=w;d2[v][0]=-inf;
for(int k=1;k<=16;k++)
{
int anc=fa[v][k-1];
fa[v][k]=fa[anc][k-1];
int dis[4]={d1[v][k-1],d2[v][k-1],d1[anc][k-1],d2[anc][k-1]};
d1[v][k]=-inf,d2[v][k]=-inf;
for(int p=0;p<4;p++)
{
int t=dis[p];
if(t>d1[v][k])d2[v][k]=d1[v][k],d1[v][k]=t;
else if(t!=d1[v][k]&&t>d2[v][k]) d2[v][k]=t;
}
}
}
}
}
}
inline int lca(int a,int b,LL w)
{
int cnt=0;
static int dist[N*2];
if(depth[a]<depth[b])swap(a,b);
for(int k=16;k>=0;k--)
{
if(depth[fa[a][k]]>=depth[b])
{
dist[cnt++]=d1[a][k];
dist[cnt++]=d2[a][k];
a=fa[a][k];
}
}
if(a!=b)
{
for(int k=16;k>=0;k--)
{
if(fa[a][k]!=fa[b][k])
{
dist[cnt++]=d1[a][k];
dist[cnt++]=d2[a][k];
dist[cnt++]=d1[b][k];
dist[cnt++]=d2[b][k];
a=fa[a][k],b=fa[b][k];
}
}
dist[cnt++]=d1[a][0];
dist[cnt++]=d1[b][0];
}
int dist1=-inf,dist2=-inf;
for(int i=0;i<cnt;i++)
{
int d=dist[i];
if(d>dist1)dist2=dist1,dist1=d;
else if(d!=dist1&&d>dist2)dist2=d;
}
if(w>dist1)return w-dist1;
if(w>dist2)return w-dist2;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;i++)pre[i]=i;
for(int i=1;i<=m;i++)
{
int a,b,c;
a=read();b=read();c=read();
edge[i]={a,b,c};
}
LL w=kruskal();
build();
bfs();
LL res=1e18;
for(int i=1;i<=m;i++)
{
if(!edge[i].used)
{
res=min(res,w+lca(edge[i].a,edge[i].b,edge[i].c));
}
}
printf("%lld",res);
}
题目五
这道题要用到树上差分:
对于两个顶点x,y;要对他们两点到其LCA上的所有边都加上a;
则引入差分数组d;公式即为d[x]+a;d[y]+a;y[p]-2*a;
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,m,depth[N],fa[N][17],dp[N],ans;
vector<int>G[N];
void bfs()
{
memset(depth,0x3f,sizeof depth);
queue<int>q;
depth[0]=0;depth[1]=1;
q.push(1);
while(!q.empty())
{
int u=q.front();q.pop();
for(auto v:G[u])
{
if(depth[v]>depth[u]+1)
{
depth[v]=depth[u]+1;
q.push(v);
fa[v][0]=u;
for(int k=1;k<=16;k++)
{
fa[v][k]=fa[fa[v][k-1]][k-1];
}
}
}
}
}
int LCA(int a,int b)
{
if(depth[a]<depth[b])swap(a,b);
for(int k=16;k>=0;k--)
{
if(depth[fa[a][k]]>=depth[b])
{
a=fa[a][k];
}
}
if(a==b)return a;
else
{
for(int k=16;k>=0;k--)
{
if(fa[a][k]!=fa[b][k])
{
a=fa[a][k];
b=fa[b][k];
}
}
}
return fa[a][0];
}
int dfs(int u,int father)
{
int res=dp[u];
for(auto v:G[u])
{
if(v!=father)
{
int s=dfs(v,u);
if(s==0)ans+=m;
else if(s==1)ans+=1;
res+=s;
}
}
return res;
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=1;i<n;i++)
{
int a,b;
scanf("%d %d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
bfs();
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d %d",&a,&b);
int p=LCA(a,b);
dp[a]++;dp[b]++;dp[p]-=2;
}
dfs(1,-1);
printf("%d\n",ans);
}