建立一个逻辑回归模型来预测学生是否被大学录取。
根据每位申请者的两次考试成绩来确定他们的录取机会。有每位申请者的历史数据,可以 用作Logistic回归的训练集。
目标:建立分类器(求解出三个参数θ_0、θ_1、θ_2),即得出分界线。
备注:θ_1对应’exam1’,θ_2对应’exam2’
设定阈值,根据阈值判断录取结果。
备注:阈值指最终得到的概率值,将概率值转化为一个类别。一般是>0.5被录取。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import classification_report # 评价报告
plt.style.use('fivethirtyeight') # 样式美化
data = pd.read_csv('ex2data1.txt',names=['exam1','exam2','admitted'])
# print(data.head())
# print(data.describe())
# 设置样式参数,默认主题darkgrid(灰色背景+白网格),调色板 2色
# sns.set(context ='notebook',style = 'darkgrid',palette = sns.color_palette('RdBu',2),color_codes=False)
# sns.lmplot('exam1','exam2',hue='admitted',data=data,
#