【吴恩达机器学习】逻辑回归习题

这篇博客探讨了如何建立一个逻辑回归模型,基于学生的两次考试成绩来预测他们是否会被大学录取。利用历史数据作为训练集,目标是求解三个参数θ_0、θ_1、θ_2,以确定录取的分界线。通过设定阈值,如概率大于0.5视为录取,将预测概率转化为实际类别。
摘要由CSDN通过智能技术生成

​ 建立一个逻辑回归模型来预测学生是否被大学录取。

​ 根据每位申请者的两次考试成绩来确定他们的录取机会。有每位申请者的历史数据,可以 用作Logistic回归的训练集。

​ 目标:建立分类器(求解出三个参数θ_0、θ_1、θ_2),即得出分界线。

​ 备注:θ_1对应’exam1’,θ_2对应’exam2’

​ 设定阈值,根据阈值判断录取结果。

​ 备注:阈值指最终得到的概率值,将概率值转化为一个类别。一般是>0.5被录取。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import classification_report # 评价报告

plt.style.use('fivethirtyeight') # 样式美化

data = pd.read_csv('ex2data1.txt',names=['exam1','exam2','admitted'])
# print(data.head())
# print(data.describe())

# 设置样式参数,默认主题darkgrid(灰色背景+白网格),调色板 2色
# sns.set(context ='notebook',style = 'darkgrid',palette = sns.color_palette('RdBu',2),color_codes=False)
# sns.lmplot('exam1','exam2',hue='admitted',data=data,
#    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值