扩散模型复习——Diffusion Models Review(Understanding Diffusion Models: A Unified Perspective论文公式推导)
文章目录
摘要
本周周报系统性地梳理了扩散模型的理论基础与优化机制,重点围绕《Understanding Diffusion Models: A Unified Perspective》的公式推导展开。内容涵盖生成模型的目标、证据下界(ELBO)的数学推导及其在变分自编码器(VAE)与多层变分自编码器(HVAE/MHVAE)中的应用,深入分析了变分扩散模型(VDM)的优化目标分解为重构项、先验匹配项与去噪匹配项的理论依据。此外,通过加噪过程的闭式解推导与去噪过程的逐步迭代分析,揭示了扩散模型通过神经网络预测原图的核心优化逻辑,为理解其生成机制提供了理论支撑。
Abstract
This review systematically explores the theoretical foundations and optimization mechanisms of diffusion models, focusing on the mathematical derivations in Understanding Diffusion Models: A Unified Perspective. The study covers the objectives of generative models, the derivation of the Evidence Lower Bound (ELBO), and its application in Variational Autoencoders (VAE) and their hierarchical extensions (HVAE/MHVAE). It further dissects the optimization objective of Variational Diffusion Models (VDM) into reconstruction, prior matching, and denoising matching terms. By deriving the closed-form solution of the forward noising process and analyzing the iterative denoising steps, the review highlights the core mechanism of optimizing diffusion models through neural network-based prediction of the original data, offering a unified perspective on their generative principles.
周报内容
1.引言:生成模型的目标
首先是概括性地介绍生成模型的目标以及目前生成模型的类型。
从2个原因充分理解证据下界ELBO(如何推导):
- 为什么ELBO的形式如此?
- 对数似然 l o g p ( x ) log\ p(x) log p(x)中的众多下界中,为什么就选择ELBO作为优化的对象?
2.背景:证据下界, 变分自编码器和多层变分自编码器
这一张主要介绍:
- VAE为什么叫变分自动编码器 。
- 深入剖析理解ELBO的2项 。
- 从高斯分布设定编码器(后验分布) (1)蒙特卡洛 (2)重参数化。
这一张主要介绍:优化目标ELBO的推广
- 第一个推广模型:HVAE
- 第二个推广模型:MHVAE
3.变分扩散模型
这一张主要介绍变分扩散模型VDM的表示和优化思路(3个限制条件的深刻理解)
这一张是变分扩散模型VDM的优化目标:ELBO的拆解项含义详解
- 重构项
- 先验匹配项
- 一致项
扩散模型的优化核心就是去噪匹配项,这张详细推导了去噪匹配项的由来。
ELBO优化目标的另一种拆解方式:
- 重构项
- 先验匹配项
- 去噪匹配项
这一张介绍加噪过程:为什么只需给定时间步 t t t和原图 x 0 x_0 x0就可以直接生成噪图 x t x_t xt?
同时介绍去噪过程:如何由纯噪图逐步去噪变清晰,即从 x t x_t xt到 x t − 1 x_{t-1} xt−1,去推导噪分布表达式。
本周的最后一张,介绍VDM的优化目标转化为利用一个神经网络预测原图 x 0 x_0 x0。
总结
本次周报通过理论推导与公式解析,系统性地总结了扩散模型的核心框架。研究探讨了ELBO在变分推断中的关键作用,揭示了VAE到VDM的扩展逻辑,并深入分析了VDM优化目标中各项的物理意义,尤其是去噪匹配项对模型性能的决定性影响。通过对加噪过程的闭式解与去噪过程的条件分布推导,明确了扩散模型通过逐步噪声预测实现数据生成的内在机制。本次周报主要是复习并深化了对扩散模型理论基础的理解。