使用 vLLM 和 YaRN 扩展技术部署 Qwen3-32B 大模型:实现 80K 长文本推理

引言

在大语言模型(LLM)应用日益广泛的今天,如何高效地部署大模型并扩展其上下文处理能力成为许多开发者和企业面临的挑战。本文将详细介绍如何使用 vLLM 推理引擎部署 Qwen3-32B 模型,并利用 YaRN 旋转位置编码扩展技术实现高达 80K tokens 的长文本处理能力。

技术栈概述

vLLM 简介

vLLM 是一个高性能的 LLM 推理和服务引擎,以其高效的注意力机制(PagedAttention)和优异的内存管理著称。它提供了与 OpenAI API 兼容的接口,使得现有应用可以无缝迁移。

Qwen3-32B 模型

Qwen3-32B 是阿里巴巴开源的高性能 320 亿参数大语言模型,在多项基准测试中表现出色。其原生支持 32K 上下文长度。

YaRN 旋转位置编码

YaRN(Yet another RoPE extensioN)是一种先进的旋转位置编码(RoPE)扩展方法,相比传统的线性缩放,能更有效地保持模型在长上下文中的表现。

部署配置详解

以下是我们的核心部署命令及技术解析:

python -m vllm.e
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ven%

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值