1.功能受限的表结构
对表结构的功能加以限制,形成特殊的表结构
(1) 栈:
只有一个出入口的表结构,先进后出,FILO表
1.顺序栈:
数据项:
存储元素的内存首地址
栈的容量
栈顶位置
运算:
创建、销毁、入栈、出栈、栈顶、栈空、栈满、数量
#include <stdio.h> //顺序栈
#include <stdlib.h>
#include <stdbool.h>
#define TYPE int
// 栈的结构体
typedef struct ArrayStack
{
TYPE* ptr; //栈存放内容的指针
size_t cal; //容量
size_t top; //栈顶位置下标
}ArrayStack;
// 创建
ArrayStack* create_array_stack(size_t cal)
{
ArrayStack* stack=malloc(sizeof(ArrayStack));
stack->ptr=malloc(sizeof(TYPE)*cal);
stack->cal=cal;
stack->top=0;
return stack;
}
// 销毁
void destroy_array_stack(ArrayStack* stack)
{
free(stack->ptr);
free(stack);
}
// 栈空
bool empty_array_stack(ArrayStack* stack)
{
return !stack->top;
}
// 栈满
bool full_array_stack(ArrayStack* stack)
{
return stack->top>=stack->cal;
}
// 入栈
bool push_array_stack(ArrayStack* stack,TYPE data)
{
if(full_array_stack(stack)) return false;
stack->ptr[stack->top++]=data;
return true;
}
// 出栈
bool pop_array_stack(ArrayStack* stack)
{
if(empty_array_stack(stack)) return false;
stack->top--;
return true;
}
// 查看栈顶的数据
bool top_array_stack(ArrayStack* stack,TYPE* data)
{
if(empty_array_stack(stack)) return false;
*data=stack->ptr[stack->top-1];
return true;
}
// 数量
size_t size_array_stack(ArrayStack* stack)
{
return stack->top;
}
int main(int argc,const char* argv[])
{
ArrayStack* stack=create_array_stack(10);
push_array_stack(stack,3);
int num=0;
top_array_stack(stack,&num);
printf("%d\n",num);
int a[5]={1,2,3,4,5},b[5]={3,2,4,5,1};
if(is_pop(a,b,5)) //判断
printf("yes");
else
printf("no");
return 0;
}
输出结果
3
yes
2.链式栈:
数据项:
栈顶指针
节点数量
运算:
创建、销毁、入栈、出栈、栈顶、栈空、数量
#include <stdio.h> // 链式栈
#include <stdlib.h>
#include <stdbool.h>
#define TYPE int
// 节点结构
typedef struct Node
{
TYPE data;
struct Node* next;
}Node;
// 创建节点
Node* create_node(TYPE data)
{
Node* node = malloc(sizeof(Node));
node->data = data;
node->next = NULL;
return node;
}
// 设计链式栈
typedef struct ListStack
{
Node* top; // 指向栈顶指针
size_t size; // 栈的节点数量
}ListStack;
// 创建栈
ListStack* create_list_stack(void)
{
ListStack* stack = malloc(sizeof(ListStack));
stack->top = NULL;
stack->size = 0;
return stack;
}
// 栈空
bool empty_list_stack(ListStack* stack)
{
return 0 == stack->size;
}
// 入栈
void push_list_stack(ListStack* stack,TYPE data)
{
Node* node = create_node(data);
node->next = stack->top;
stack->top = node;
stack->size++;
}
// 出栈
bool pop_list_stack(ListStack* stack)
{
if(empty_list_stack(stack)) return false;
Node* temp = stack->top;
stack->top = temp->next;
free(temp);
stack->size--;
return true;
}
// 栈顶
TYPE top_list_stack(ListStack* stack)
{
return stack->top->data;
}
// 节点数
size_t size_list_stack(ListStack* stack)
{
return stack->size;
}
// 销毁栈
void destroy_list_stack(ListStack* stack)
{
while(pop_list_stack(stack))
free(stack);
}
int main(int argc,const char* argv[])
{
ListStack* stack = create_list_stack();
for(int i=0; i<10; i++)
{
push_list_stack(stack,i+1);
printf("top:%d size:%d\n",
top_list_stack(stack),size_list_stack(stack));
}
printf("----------------\n");
while(!empty_list_stack(stack))
{
printf("top:%d size:%d\n",
top_list_stack(stack),size_list_stack(stack));
pop_list_stack(stack);
}
destroy_list_stack(stack);
}
输出结果
top:1 size:1
top:2 size:2
top:3 size:3
top:4 size:4
top:5 size:5
top:6 size:6
top:7 size:7
top:8 size:8
top:9 size:9
top:10 size:10
----------------
top:10 size:10
top:9 size:9
top:8 size:8
top:7 size:7
top:6 size:6
top:5 size:5
top:4 size:4
top:3 size:3
top:2 size:2
top:1 size:1
3.栈的应用:
1、栈内存的数据存储方式
2、函数的调用
3、生产者与消费者模型(仓库:可用栈实现)
4、表达式解析
a+b*c/2 中缀表达式
计算机中以后缀表达式存储 中缀转后缀表达式使用栈
4.常见的栈的笔试题:
1、某序列为入栈序列,判断哪个序列为正确\不正确的出栈序列
i
入栈: 1 2 3 4 5 a
3 2 1 4 5 b
j
出栈: 1 2 3 4 5 yes
3 2 1 5 4 yes
5 4 2 1 3 no
2、实现一个函数,判断序列b是否是序列a的出栈序列
int a[5] = {1,2,3,4,5},b[5]={1,2,3,4,5};
is_pop(a,b,5)
bool is_pop(int* a,int* b,int len)
{
// 创建一个栈
// 按照a的顺序一个个入栈
// 入栈一个就按b的顺序出栈
// 结束后判断是否栈空
}
// 判断序列b是否是序列a的出栈序列
bool is_pop(const int* a,const int* b,size_t len)
{
ArrayStack* stack=create_array_stack(len);
int j=0;
for(int i=0;i<len;i++)
{
push_array_stack(stack,a[i]);
int top_num=-1;
while(top_array_stack(stack,&top_num)&&top_num==b[j])
{
j++;
pop_array_stack(stack);
}
}
bool flag=empty_array_stack(stack);
destroy_array_stack(stack);
return flag;
}
3、两个顺序栈,如何安排入栈方向可以让内存使用率最大化?
让两个顺序栈相邻,且入栈方向相对入栈,能够让内存空间利用率最大化
栈相关的概念:
假设栈容量为cal
空增栈:
top: 0开始 先入栈,再top++
满增栈:
top: -1开始 先top++,再入栈
空减栈:
top: cal-1开始 先入栈,再top--
满减栈:
top: cal开始 先top--,再入栈
(2)队列:
只有两个口进出数据,一个专门进入数据,另一个专门出数据,先进先出,FIFO表
1.顺序队列:
存储元素的连续内存的首地址
数据项:
容量
队头位置 (出队)
队尾位置 (入队)
[元素数量]
运算:
创建、销毁、清空、出队、入队、队空、队满、队头、队尾、元素数量
需要注意的问题
1、存储元素是由一维数组+队头位置front+队尾位置rear来表示,入队rear+1,出队front+1,为了让队列能够反复使用,我们需要把一维数组想象成一个环,因此+1后都需要对容量cal求余
front = (front+1)%cal
rear = (rear+1)%cal
2、判断队空和队满问题
如果不处理该问题,那么队空和队满的条件都是 front==rear,就无法区分是队空还是队满
方法1:存储元素的内存多增加一个位置空间(常考)
队空:front==rear
队满:(rear+1)%cal == front
代价:需要额外申请存储一个元素的内存
计算数量:(rear-front+cal)%cal
队尾数据下标:(rear-1+cal)%cal
方法2:顺序队列结构中增加一个记录元素数量的数据项,通过数量与容量对比判断队空、队满
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#define TYPE int
// 设计顺序队列结构
typedef struct ArrayQueue
{
TYPE* ptr;
size_t cal;
size_t front; //head/begin 队头位置
size_t rear; //back/tail 队尾位置 也可以int类型 从-1开始
size_t cnt;
}ArrayQueue;
// 创建顺序队列
ArrayQueue* creat_array_queue(size_t cal)
{
ArrayQueue* queue=malloc(sizeof(ArrayQueue));
queue->ptr=malloc(sizeof(TYPE)*cal);
queue->cal=cal;
queue->front=0;
queue->rear=0;
queue->cnt=0;
return queue;
}
// 销毁
void destroy_array_queue(ArrayQueue* queue)
{
free(queue->ptr);
free(queue);
}
// 队空
bool empty_array_queue(ArrayQueue* queue)
{
return 0==queue->cnt;
}
// 队满
bool full_array_queue(ArrayQueue* queue)
{
return queue->cnt==queue->cal;
}
// 入队
bool push_array_queue(ArrayQueue* queue,TYPE data)
{
if(full_array_queue(queue)) return false;
queue->ptr[queue->rear]=data;
queue->rear=(queue->rear+1)%queue->cal;
queue->cnt++;
return true;
}
// 出队
bool pop_array_queue(ArrayQueue* queue)
{
if(empty_array_queue(queue)) return false;
queue->front=(queue->front+1)%queue->cal;
queue->cnt--;
return true;
}
// 查看队头
TYPE head_array_queue(ArrayQueue* queue)
{
return queue->ptr[queue->front];
}
// 查看队尾
TYPE tail_array_queue(ArrayQueue* queue)
{
return queue->ptr[(queue->rear-1+queue->cal)%queue->cal];
}
// 数量
size_t size_array_queue(ArrayQueue* queue)
{
return queue->cnt;
}
int main(int argc,const char* argv[])
{
ArrayQueue* queue=creat_array_queue(5);
for(int i=0; i<10;i++)
{
push_array_queue(queue,i+1) && printf("tail:%d size:%d\n",
tail_array_queue(queue),size_array_queue(queue)); //入队成功才打印
}
printf("\n");
while(!empty_array_queue(queue))
{
printf("front:%d size:%d\n",
head_array_queue(queue),size_array_queue(queue));
pop_array_queue(queue);
}
printf("size:%d\n",size_array_queue(queue));
destroy_array_queue(queue);
queue=NULL;
return 0;
}
输出结果
tail:1 size:1
tail:2 size:2
tail:3 size:3
tail:4 size:4
tail:5 size:5
front:1 size:5
front:2 size:4
front:3 size:3
front:4 size:2
front:5 size:1
size:0
2.链式队列:
由若干个节点组成的队列结构,只能操作队头节点、队尾节点
链式队列结构(数据项):
队头指针
队尾指针
节点数量
运算:
创建、销毁、队空、入队、出队、队头、队尾、数量
#include <stdio.h>//链式队列
#include <stdlib.h>
#include <stdbool.h>
#define TYPE int
// 节点结构
typedef struct Node
{
TYPE data;
struct Node* next;
}Node;
//创建节点
Node* creat_node(TYPE data)
{
Node* node=malloc(sizeof(Node));
node->data=data;
node->next=NULL;
return node;
}
//设计链式队列
typedef struct ListQueue
{
Node* head;//队头
Node* tail;//队尾
size_t cnt;//节点数量
}ListQueue;
//创建队列
ListQueue* create_list_queue(void)
{
ListQueue* queue=malloc(sizeof(ListQueue));
queue->head=NULL;
queue->tail=NULL;
queue->cnt=0;
return queue;
}
//队空
bool empty_list_queue(ListQueue* queue)
{
return 0==queue->cnt;
}
//入队
void push_list_queue(ListQueue* queue,TYPE data)
{
Node* node=creat_node(data);
if(0==queue->cnt)
{
queue->head=node;
queue->tail=node;
}
else
{
queue->tail->next=node;
queue->tail=node;
}
queue->cnt++;
}
//出队
bool pop_list_queue(ListQueue* queue)
{
if(empty_list_queue(queue)) return false;
Node* temp=queue->head;
queue->head=temp->next;
free(temp);
queue->cnt--;
if(0==queue->cnt) queue->tail=NULL;
return true;
}
//队头
TYPE head_list_queue(ListQueue* queue)
{
return queue->head->data;
}
//队尾
TYPE tail_list_queue(ListQueue* queue)
{
return queue->tail->data;
}
//数量
size_t size_list_queue(ListQueue* queue)
{
return queue->cnt;
}
//销毁队列
void destroy_list_queue(ListQueue* queue)
{
while( pop_list_queue(queue));
free(queue);
}
int main(int argc,const char* argv[])
{
ListQueue* queue=create_list_queue();
for(int i=0;i<10;i++)
{
push_list_queue(queue,i+10);
printf("tail:%d ,size:%u\n",
tail_list_queue(queue),size_list_queue(queue));
}
printf("-------------------\n");
while(!empty_list_queue(queue))
{
printf("head:%d ,size:%u\n",
head_list_queue(queue),size_list_queue(queue));
pop_list_queue(queue);
}
printf("size:%d\n",size_list_queue(queue));
destroy_list_queue(queue);
queue=NULL;
return 0;
}
输出结果
tail:10 ,size:1
tail:11 ,size:2
tail:12 ,size:3
tail:13 ,size:4
tail:14 ,size:5
tail:15 ,size:6
tail:16 ,size:7
tail:17 ,size:8
tail:18 ,size:9
tail:19 ,size:10
-------------------
head:10 ,size:10
head:11 ,size:9
head:12 ,size:8
head:13 ,size:7
head:14 ,size:6
head:15 ,size:5
head:16 ,size:4
head:17 ,size:3
head:18 ,size:2
head:19 ,size:1
size:0
3.队列的应用:
1、数据排队处理-消息排队
2、树的层序遍历
3、图的广度优先遍历BFS
4、封装线程池、数据池
4.常考的笔试题、面试题:
请使用两个栈来模拟一个队列的出队、入队功能(栈结构的功能都已实现,可以直接使用)
typedef struct Queue
{
ArrayStack* s1;
ArrayStack* s2;
}Queue;
//2个栈组成队列结构
typedef struct Queue
{
ArrayStack* s1;
ArrayStack* s2;
}Queue;
// 创建队列
Queue* create_queue(size_t cal)
{
Queue* queue=malloc(sizeof(Queue));
queue->s1=create_array_stack(cal);
queue->s2=create_array_stack(cal);
return queue;
}
// 入队
bool push_queue(Queue* queue,TYPE data)
{
if(full_array_stack(queue->s1))
{
//s1满 s2非空
if(!empty_array_stack(queue->s2)) return false;
//s1满 s2空
while(!empty_array_stack(queue->s1))
{
TYPE top=0;
top_array_stack(queue->s1,&top);
push_array_stack(queue->s2,top);
pop_array_stack(queue->s1);
}
}
return push_array_stack(queue->s1,data)&&printf("tail:%d\n",data);
}
// 出队
bool pop_queue(Queue* queue)
{
if(empty_array_stack(queue->s2))
{
if(empty_array_stack(queue->s1)) return false;
while(!empty_array_stack(queue->s1))
{
TYPE top=0;
top_array_stack(queue->s1,&top);
push_array_stack(queue->s2,top);
pop_array_stack(queue->s1);
}
}
return pop_array_stack(queue->s2);
}