代码随想录:图论_05最小生成树

53. 寻宝
在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。
不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将 所有岛屿联通起来(注意:这是一个无向图)。
给定一张地图,其中包括了所有的岛屿,以及它们之间的距离。以最小化公路建设长度,确保可以链接到所有岛屿。

Prim算法

#include<bits/stdc++.h>
using namespace std;
int main() {
    int v, e;
    int x, y, k;
    cin >> v >> e;
    // 填一个默认最大值,题目描述val最大为10000
    vector<vector<int>> grid(v + 1, vector<int>(v + 1, 10001));
    while (e--) {
        cin >> x >> y >> k;
        // 因为是双向图,所以两个方向都要填上
        grid[x][y] = k;
        grid[y][x] = k;

    }
    // 所有节点到最小生成树的最小距离
    vector<int> minDist(v + 1, 10001);

    // 这个节点是否在树里
    vector<bool> isInTree(v + 1, false);

    // 我们只需要循环 n-1次,建立 n - 1条边,就可以把n个节点的图连在一起
    for (int i = 1; i < v; i++) {

        // 1、prim三部曲,第一步:选距离生成树最近节点
        int cur = -1; // 选中哪个节点 加入最小生成树
        int minVal = INT_MAX;
        for (int j = 1; j <= v; j++) { // 1 - v,顶点编号,这里下标从1开始
            //  选取最小生成树节点的条件:
            //  (1)不在最小生成树里
            //  (2)距离最小生成树最近的节点
            if (!isInTree[j] &&  minDist[j] < minVal) {
                minVal = minDist[j];
                cur = j;
            }
        }
        // 2、prim三部曲,第二步:最近节点(cur)加入生成树
        isInTree[cur] = true;

        // 3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)
        // cur节点加入之后, 最小生成树加入了新的节点,那么所有节点到 最小生成树的距离(即minDist数组)需要更新一下
        // 由于cur节点是新加入到最小生成树,那么只需要关心与 cur 相连的 非生成树节点 的距离 是否比 原来 非生成树节点到生成树节点的距离更小了呢
        for (int j = 1; j <= v; j++) {
            // 更新的条件:
            // (1)节点是 非生成树里的节点
            // (2)与cur相连的某节点的权值 比 该某节点距离最小生成树的距离小
            if (!isInTree[j] && grid[cur][j] < minDist[j]) {
                minDist[j] = grid[cur][j];
            }
        }
    }
    // 统计结果
    int result = 0;
    for (int i = 2; i <= v; i++) { // 不计第一个顶点,因为统计的是边的权值,v个节点有 v-1条边
        result += minDist[i];
    }
    cout << result << endl;

}

Kruskal算法

#include<bits/stdc++.h>
using namespace std;
// l,r为 边两边的节点,val为边的数值
struct Edge {
    int l, r, val;
};
// 节点数量
int n = 10001;
// 并查集标记节点关系的数组
vector<int> father(n, -1); // 节点编号是从1开始的,n要大一些
// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
}
// 并查集的查找操作
int find(int u) {
    return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}
// 并查集的加入集合
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根
    if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
    father[v] = u;
}
bool cmp(Edge a, Edge b){
    return a.val < b.val;
}
int main() {
    int v, e;
    int v1, v2, val;
    vector<Edge> edges;
    int result_val = 0;
    cin >> v >> e;
    while (e--) {
        cin >> v1 >> v2 >> val;
        edges.push_back({v1, v2, val});
    }

    // 执行Kruskal算法
    // 按边的权值对边进行从小到大排序
    sort(edges.begin(), edges.end(), cmp);

    // 并查集初始化
    init();

    // 从头开始遍历边
    for (Edge edge : edges) {
        // 并查集,搜出两个节点的祖先
        int x = find(edge.l);
        int y = find(edge.r);

        // 如果祖先不同,则不在同一个集合
        if (x != y) {
            result_val += edge.val; // 这条边可以作为生成树的边
            join(x, y); // 两个节点加入到同一个集合
        }
    }
    cout << result_val << endl;
    return 0;
}

117. 软件构建
某个大型软件项目的构建系统拥有 N 个文件,文件编号从 0 到 N - 1,在这些文件中,某些文件依赖于其他文件的内容,这意味着如果文件 A 依赖于文件 B,则必须在处理文件 A 之前处理文件 B (0 <= A, B <= N - 1)。请编写一个算法,用于确定文件处理的顺序。

拓扑排序

邻接矩阵

#include<bits/stdc++.h>
using namespace std;
int main(){
    int n, m;
    int x, y;
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(n, -1));
    vector<int> inDegree(n, 0); // 记录每个文件的入度
    vector<int> result;
    while(m--){
        cin >> x >> y;
        grid[x][y] = 1;
        inDegree[y]++;
    }
    for(int k = 0; k < n; k++){
        int cur = -1;
        for(int i = 0; i < n; i++){
            if(inDegree[i] == 0){
                cur = i;
                result.push_back(i);
                inDegree[i] = -1;
                break;
            }
        }
        if(cur == -1)
            break;
        for(int i = 0; i < n; i++){
            if(grid[cur][i] == 1){
                grid[cur][i] = 0;
                inDegree[i]--;
            }
        }
    }
    if(result.size() == n){
        for(int k = 0; k < n - 1; k++){
            cout << result[k] << " ";
        }
        cout << result[n - 1];
    }else
        cout << -1 ;
    return 0;
}

队列

#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>
using namespace std;
int main() {
    int m, n, s, t;
    cin >> n >> m;
    vector<int> inDegree(n, 0); // 记录每个文件的入度
    unordered_map<int, vector<int>> umap;// 记录文件依赖关系
    vector<int> result; // 记录结果
    while (m--) {
        // s->t,先有s才能有t
        cin >> s >> t;
        inDegree[t]++; // t的入度加一
        umap[s].push_back(t); // 记录s指向哪些文件
    }
    queue<int> que;
    for (int i = 0; i < n; i++) {
        // 入度为0的文件,可以作为开头,先加入队列
        if (inDegree[i] == 0) que.push(i);
    }
    while (que.size()) {
        int  cur = que.front(); // 当前选中的文件
        que.pop();
        result.push_back(cur);
        vector<int> files = umap[cur]; //获取该文件指向的文件
        if (files.size()) { // cur有后续文件
            for (int i = 0; i < files.size(); i++) {
                inDegree[files[i]] --; // cur的指向的文件入度-1
                if(inDegree[files[i]] == 0) que.push(files[i]);
            }
        }
    }
    if (result.size() == n) {
        for (int i = 0; i < n - 1; i++) cout << result[i] << " ";
        cout << result[n - 1];
    } else cout << -1 << endl;
}

47. 参加科学大会
小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。
小明的起点是第一个车站,终点是最后一个车站。然而,途中的各个车站之间的道路状况、交通拥堵程度以及可能的自然因素(如天气变化)等不同,这些因素都会影响每条路径的通行时间。
小明希望能选择一条花费时间最少的路线,以确保他能够尽快到达目的地。

dijkstra

#include<bits/stdc++.h>
using namespace std;
int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<vector<int>> grid(n + 1, vector<int>(n + 1, INT_MAX));
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        grid[p1][p2] = val;
    }
    // 存储从源点到每个节点的最短距离
    vector<int> minDist(n + 1, INT_MAX);
    // 记录顶点是否被访问过
    vector<bool> visited(n + 1, false);
    minDist[1] = 0;  // 起始点到自身的距离为0
    for (int i = 1; i <= n; i++) { // 遍历所有节点
        int minVal = INT_MAX;
        int cur = 1;
        // 1、选距离源点最近且未访问过的节点
        for (int v = 1; v <= n; ++v) {
            if (!visited[v] && minDist[v] < minVal) {
                minVal = minDist[v];
                cur = v;
            }
        }
        visited[cur] = true;  // 2、标记该节点已被访问
        // 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
        for (int v = 1; v <= n; v++) {
            if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
                minDist[v] = minDist[cur] + grid[cur][v];
            }
        }
    }
    if (minDist[n] == INT_MAX) cout << -1 << endl; // 不能到达终点
    else cout << minDist[n] << endl; // 到达终点最短路径

}

堆优化(邻接表)

#include<bits/stdc++.h>
using namespace std; 
// 小顶堆
class mycomparison {
public:
    bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
        return lhs.second > rhs.second;
    }
};
// 定义一个结构体来表示带权重的边
struct Edge {
    int to;  // 邻接顶点
    int val; // 边的权重
    Edge(int t, int w): to(t), val(w) {}  // 构造函数
};
int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;
    vector<list<Edge>> grid(n + 1);
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val; 
        // p1 指向 p2,权值为 val
        grid[p1].push_back(Edge(p2, val));
    }
    int start = 1;  // 起点
    int end = n;    // 终点
    // 存储从源点到每个节点的最短距离
    std::vector<int> minDist(n + 1, INT_MAX);
    // 记录顶点是否被访问过
    std::vector<bool> visited(n + 1, false); 
    // 优先队列中存放 pair<节点,源点到该节点的权值>
    priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pq;
    // 初始化队列,源点到源点的距离为0,所以初始为0
    pq.push(pair<int, int>(start, 0)); 
    minDist[start] = 0;  // 起始点到自身的距离为0
    while (!pq.empty()) {
        // 1. 第一步,选源点到哪个节点近且该节点未被访问过 (通过优先级队列来实现)
        // <节点, 源点到该节点的距离>
        pair<int, int> cur = pq.top(); pq.pop();
        if (visited[cur.first]) continue;
        // 2. 第二步,该最近节点被标记访问过
        visited[cur.first] = true;
        // 3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)
        for (Edge edge : grid[cur.first]) { // 遍历 cur指向的节点,cur指向的节点为 edge
            // cur指向的节点edge.to,这条边的权值为 edge.val
            if (!visited[edge.to] && minDist[cur.first] + edge.val < minDist[edge.to]) { // 更新minDist
                minDist[edge.to] = minDist[cur.first] + edge.val;
                pq.push(pair<int, int>(edge.to, minDist[edge.to]));
            }
        }
    }
    if (minDist[end] == INT_MAX) cout << -1 << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径
}

堆优化(邻接矩阵)

using namespace std;
// 小顶堆
class mycomparison {
public:
    bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
        return lhs.second > rhs.second;
    }
};
int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;
    vector<vector<int>> grid(n + 1, vector<int>(n + 1, INT_MAX));
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        // p1 指向 p2,权值为 val
        grid[p1][p2] = val;
    }
    int start = 1;  // 起点
    int end = n;    // 终点
    // 存储从源点到每个节点的最短距离
    std::vector<int> minDist(n + 1, INT_MAX);
    // 记录顶点是否被访问过
    std::vector<bool> visited(n + 1, false);
    // 优先队列中存放 pair<节点,源点到该节点的距离>
    priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pq;
    // 初始化队列,源点到源点的距离为0,所以初始为0
    pq.push(pair<int, int>(start, 0));
    minDist[start] = 0;  // 起始点到自身的距离为0
    while (!pq.empty()) {
        // <节点, 源点到该节点的距离>
        // 1、选距离源点最近且未访问过的节点
        pair<int, int> cur = pq.top(); pq.pop();
        if (visited[cur.first]) continue;
        visited[cur.first] = true; // 2、标记该节点已被访问
        // 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
        for (int j = 1; j <= n; j++) {
            if (!visited[j] && grid[cur.first][j] != INT_MAX && (minDist[cur.first] + grid[cur.first][j] < minDist[j])) {
                minDist[j] = minDist[cur.first] + grid[cur.first][j];
                pq.push(pair<int, int>(j, minDist[j]));
            }
        }
    }
    if (minDist[end] == INT_MAX) cout << -1 << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值