关机下班,6了6了

一、何为魔法方法?


Python中,一定要区分开函数和方法的含义、

1.函数:类外部定义的,跟类没有直接关系的,形式: def func(*argv):

2.方法:class内部定义的函数(对象的方法也可以认为是属性);分为两种:

① python自动产生的方法(魔法方法):魔法方法总是被双下划线包围,例如__init__,其一般形式为 __func__(),python会在对应的时机自动调用该函数

② 人为自定义的方法:一般和普通函数没有区别,只是定义在了class中而已

3.方法与函数的区别:

①方法可认为是函数的特殊情况

② 方法定义在class内部

③方法(包括魔法方法)的第一个参数应为 cls(类方法) 或者 self(实例方法)

二、基本魔法方法


1.__init__(self[, ...]) 构造函数,当一个实例被创建的时候调用的初始化方法

class U:
    def __init__(self, number):
        self.num = number

    def print_num(self):
        print(self.num)


uuu = U(6)  # 实例化一个对象时__init__就被调用,所以需要传入参数
uuu.print_num()  # 6

__init__ 方法的返回值一定是None

class U:
    def __init__(self):
        self.num = 6
        return self.num  # 试图加上一个return语句


uuu = U()  # TypeError: __init__() should return None, not 'int'

2.__new__(cls[, ...]) 在一个对象实例化的时候所调用的第一个方法,在调用__init__初始化前,先调用__new__一定要返回一个对象,可以是这个类的实例对象,也可以是其他类的实例对象(比如基类的),否则,实例化失败,self 无法接受到一个实例对象,这是因为拍婶机约定:

  • __new__至少要有一个参数cls,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给__init__
  • __new__对当前类进行了实例化,并将实例返回,传给__init__self。但是,执行了__new__,并不一定会进入__init__,只有__new__返回了,当前类cls的实例,当前类的__init__才会进入。

我们直接来读一段代码

class A(object):  # py3中是默认继承自object基类
    def __new__(cls, *args, **kwargs):  # cls = A
        return object.__new__(cls)
        # 调用object的__new__方法来处理这个类(A)的__new__方法


class B(A):
    def __new__(cls, *args, **kwargs):  # cls = B
        return super().__new__(cls, *args, **kwargs)
        # 调用基类的__new__方法来处理这个类(B)的__new__方法


class C(A):
    def __new__(cls, *args, **kwargs):  # cls = C
        return super().__new__(A, *args, **kwargs)  # 改动了cls变为 A
		# 调用基类的__new__方法来处理这个类(B)的__new__方法,但传入的类变成了 A

a = A()
print(type(a))  # <class '__main__.A'>
b = B()
print(type(b))  # <class '__main__.B'>
c = C()
print(type(c))  # <class '__main__.A'>

__new__方法可以用来改写一些不可变的类时(比如int, str, tuple), 提供给你一个自定义这些类的实例化过程的途径

class CapStr(str):  # 继承 str
    def __new__(cls, string):
        string1 = string.upper()  # 将参数变成大写
        return str.__new__(cls, string1)  # 再将string1丢给基类处理


a = CapStr("i love u")
print(a)  # I LOVE U

3.__del__(self) 析构器,当一个对象将要被系统回收之时调用的方法。

注意del x != x.__del__()

class C(object):
    def __init__(self):
        print('into C __init__')

    def __del__(self):
        print('into C __del__')


c1 = C()
# into C __init__
c2 = c1
c3 = c2
del c3
del c2
del c1
# into C __del__  即所有引用的变量都被删除了之后,才会启用 __del__方法

4.__str__(self)__repr__(self)

  • __str__(self):

    • 当你打印一个对象的时候,触发__str__
    • 当你使用%s格式化的时候,触发__str__
    • str强转数据类型的时候,触发__str__
    • __str__(self) 的返回结果可读性强。也就是说,__str__ 的意义是得到便于人们阅读的信息,就像下面的 ‘2019-10-11’ 一样。
  • __repr__(self)

    • reprstr的备胎
    • __str__的时候执行__str__,没有实现__str__的时候,执行__repr__
    • repr(obj)内置函数对应的结果是__repr__的返回值
    • 当你使用%r格式化的时候 触发__repr__
    • __repr__(self) 的返回结果应更准确。怎么说,__repr__ 存在的目的在于调试,便于开发者使用。

三、运算符

一、基本运算符


敷衍模式开启
  • __add__(self, other)定义加法的行为:+
  • __sub__(self, other)定义减法的行为:-
  • __mul__(self, other)定义乘法的行为:*
  • __truediv__(self, other)定义真除法的行为:/
  • __floordiv__(self, other)定义整数除法的行为://
  • __mod__(self, other) 定义取模算法的行为:%
  • __divmod__(self, other)定义当被 divmod() 调用时的行为
  • divmod(a, b)把除数和余数运算结果结合起来,返回一个包含商和余数的元组(a // b, a % b)
  • __pow__(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
  • __lshift__(self, other)定义按位左移位的行为:<<
  • __rshift__(self, other)定义按位右移位的行为:>>
  • __and__(self, other)定义按位与操作的行为:&
  • __xor__(self, other)定义按位异或操作的行为:^
  • __or__(self, other)定义按位或操作的行为:|

二、反算术运算符


反运算魔方方法,与算术运算符保持一一对应,不同之处就是反运算的魔法方法多了一个“r”。当文件左操作不支持相应的操作时被调用。特别要注意参数顺序问题

怎么理解这个“反”呢?

打个比方,a + b 主动的是 a ,即调用的是a里面的__add__方法,此时若 a不灵了(比如a没有被定义),a 就无法调用自己的加法,这时 b就说:你在此地不要动,我去调用我的方法就回来!于是 b就调用 __radd__方法开心地把a 加上了。

没有什么新鲜的,就是多了个“r”

  • __radd__(self, other)定义加法的行为:+
  • __rsub__(self, other)定义减法的行为:-
  • __rmul__(self, other)定义乘法的行为:*
  • __rtruediv__(self, other)定义真除法的行为:/
  • __rfloordiv__(self, other)定义整数除法的行为://
  • __rmod__(self, other) 定义取模算法的行为:%
  • __rdivmod__(self, other)定义当被 divmod() 调用时的行为
  • __rpow__(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
  • __rlshift__(self, other)定义按位左移位的行为:<<
  • __rrshift__(self, other)定义按位右移位的行为:>>
  • __rand__(self, other)定义按位与操作的行为:&
  • __rxor__(self, other)定义按位异或操作的行为:^
  • __ror__(self, other)定义按位或操作的行为:|

三、增量赋值运算符


  • __iadd__(self, other)定义赋值加法的行为:+=
  • __isub__(self, other)定义赋值减法的行为:-=
  • __imul__(self, other)定义赋值乘法的行为:*=
  • __itruediv__(self, other)定义赋值真除法的行为:/=
  • __ifloordiv__(self, other)定义赋值整数除法的行为://=
  • __imod__(self, other)定义赋值取模算法的行为:%=
  • __ipow__(self, other[, modulo])定义赋值幂运算的行为:**=
  • __ilshift__(self, other)定义赋值按位左移位的行为:<<=
  • __irshift__(self, other)定义赋值按位右移位的行为:>>=
  • __iand__(self, other)定义赋值按位与操作的行为:&=
  • __ixor__(self, other)定义赋值按位异或操作的行为:^=
  • __ior__(self, other)定义赋值按位或操作的行为:|=

四、一元运算符


  • __neg__(self)定义正号的行为:+x
  • __pos__(self)定义负号的行为:-x
  • __abs__(self)定义当被abs()调用时的行为
  • __invert__(self)定义按位求反的行为:~x

四、属性访问


  • __getattr__(self, name): 定义当用户试图获取一个不存在的属性时的行为。
  • __getattribute__(self, name):定义当该类的属性被访问时的行为(先调用该方法,查看是否存在该属性,若不存在,接着去调用__getattr__)。
  • __setattr__(self, name, value):定义当一个属性被设置时的行为。
  • __delattr__(self, name):定义当一个属性被删除时的行为。

五、描述符


描述符就是将某种特殊类型的类的实例指派给另一个类的属性。
  • __get__(self, instance, owner)用于访问属性,它返回属性的值。
  • __set__(self, instance, value)将在属性分配(赋值)操作中调用,不返回任何内容。
  • __del__(self, instance)控制删除操作,不返回任何内容。

六、 定制序列

协议(Protocols)与其它编程语言中的接口很相似,它规定你哪些方法必须要定义。然而,在 Python 中的协议就显得不那么正式。事实上,在 Python 中,协议更像是一种指南。

容器类型的协议

  • 如果说你希望定制的容器是不可变的话,你只需要定义__len__()__getitem__()方法。
  • 如果你希望定制的容器是可变的话,除了__len__()__getitem__()方法,你还需要定义__setitem__()__delitem__()两个方法。

【例子】编写一个不可改变的自定义列表,要求记录列表中每个元素被访问的次数。

class CountList:
    def __init__(self, *args):
        self.values = [x for x in args]
        self.count = {}.fromkeys(range(len(self.values)), 0)

    def __len__(self):
        return len(self.values)

    def __getitem__(self, item):
        self.count[item] += 1
        return self.values[item]


c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
print(c1[1] + c2[1])  # 7

print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}

print(c2.count)
# {0: 0, 1: 1, 2: 1, 3: 0, 4: 0}
  • __len__(self)定义当被len()调用时的行为(返回容器中元素的个数)。
  • __getitem__(self, key)定义获取容器中元素的行为,相当于self[key]
  • __setitem__(self, key, value)定义设置容器中指定元素的行为,相当于self[key] = value
  • __delitem__(self, key)定义删除容器中指定元素的行为,相当于del self[key]

七、迭代器

一、迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。

  • 迭代器是一个可以记住遍历的位置的对象。
  • 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。
  • 迭代器只能往前不会后退。
  • 字符串,列表或元组对象都可用于创建迭代器

二、迭代器有两个基本的方法:iter()next()

  • iter(object) 函数用来生成迭代器。
  • next(iterator[, default]) 返回迭代器的下一个项目。
  • iterator – 可迭代对象
  • default – 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 StopIteration 异常。

三、把一个类作为一个迭代器使用需要在类中实现两个魔法方法 __iter__()__next__()

  • __iter__(self)定义当迭代容器中的元素的行为,返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。
  • __next__() 返回下一个迭代器对象。
  • StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。

【例子】用生成器实现斐波那契数列。

class Fibs:
    def __init__(self, n=10):
        self.a = 0
        self.b = 1
        self.n = n

    def __iter__(self):
        return self

    def __next__(self):
        self.a, self.b = self.b, self.a + self.b
        if self.a > self.n:
            raise StopIteration
        return self.a


fibs = Fibs(100)
for each in fibs:
    print(each, end=' ')

# 1 1 2 3 5 8 13 21 34 55 89

八、生成器

  • 在 Python 中,使用了 yield 的函数被称为生成器(generator)。
  • 跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
  • 在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
  • 调用一个生成器函数,返回的是一个迭代器对象。

【例子】用生成器实现斐波那契数列。

def libs(n):
    a = 0
    b = 1
    while True:
        a, b = b, a + b
        if a > n:
            return  # 相当于 return None
        yield a  # # 暂停运行,返回 a 的值,然后继续从此状态运行


for each in libs(100):
    print(each, end=' ')

# 1 1 2 3 5 8 13 21 34 55 89

练习题:

利用python做一个简单的定时器类

要求:

  • 定制一个计时器的类。
  • startstop方法代表启动计时和停止计时。
  • 假设计时器对象t1print(t1)和直接调用t1均显示结果。
  • 当计时器未启动或已经停止计时时,调用stop方法会给予温馨的提示。
  • 两个计时器对象可以进行相加:t1+t2
  • 只能使用提供的有限资源完成。

(已超出知识范围。。。。)

参考文献:

1.技术图文:Python魔法方法之属性访问详解

2.技术图文:什么是Python的描述符?

3.如何利用python做一个简单的定时器类[小甲鱼零基础学拍婶]

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页