前缀和与差分——算法思路
一维前缀和
思路:前缀和即数组前i个数字的和
作用:能快速求出原数组里一段数的和。
普通计算一段数的和的复杂度是O(n)的,而前缀和数组是O(1)的
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n,m;
const int N = 100010;
int a[N];//原数组
int s[N];//前缀和数组
int main()
{
cin >> n >> m;
for(int i=1; i<=n; i++)
{
cin >> a[i];
s[i] = s[i-1] + a[i];
}
while(m--)
{
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", s[r]-s[l-1]);
}
return 0;
}
二维前缀和
思路:通过不同长方形的加减获得矩形数组大小
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 1010;
int n,m,q;
int a[N][N],s[N][N];
int main()
{
scanf("%d%d%d",&n,&m,&q);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
scanf("%d",&a[i][j]);
}
}
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
s[i][j] = s[i-1][j] + s[i][j-1] + a[i][j] - s[i-1][j-1]; //求前缀和
}
}
while(q--)
{
int x1,y1,x2,y2;//左上角与右下角
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
printf("%d\n",s[x2][y2] - s[x1-1][y2] - s[x2][y1-1] + s[x1-1][y1-1]);//求子矩阵和
}
return 0;
}
一维差分
实际上是前缀和的逆运算
用处:有b数组后可以用O(n)的时间得到a数组
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
//构造差分数组
void insert(int l, int r, int c)
{
b[l] += c;
b[r + 1] -= c;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
for (int i = 1; i <= n; i ++ ) insert(i, i, a[i]);
while (m -- )
{
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
insert(l, r, c);
}
//对差分数组求一遍前缀和
for (int i = 1; i <= n; i ++ ) b[i] += b[i - 1];
for (int i = 1; i <= n; i ++ ) printf("%d ", b[i]);
return 0;
}
二维差分
思路与二维前缀和类似,也是通过矩形论证
#include <iostream>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];
void insert(int x1, int y1, int x2, int y2, int c)
{
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
int main()
{
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
scanf("%d", &a[i][j]);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
insert(i, j, i, j, a[i][j]);
while (q -- )
{
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
insert(x1, y1, x2, y2, c);
}
//求前缀和
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
for (int i = 1; i <= n; i ++ )
{
for (int j = 1; j <= m; j ++ ) printf("%d ", b[i][j]);
puts("");
}
return 0;
}