【基础算法】(5)前缀和与差分

前缀和与差分——算法思路

一维前缀和

思路:前缀和即数组前i个数字的和
作用:能快速求出原数组里一段数的和。
普通计算一段数的和的复杂度是O(n)的,而前缀和数组是O(1)的
在这里插入图片描述

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n,m;
const int N = 100010;
int a[N];//原数组
int s[N];//前缀和数组
int main()
{
    cin >> n >> m;
    for(int i=1; i<=n; i++)
    {
        cin >> a[i];
        s[i] = s[i-1] + a[i];
    }
    while(m--)
    {
        int l, r;
        scanf("%d%d", &l, &r);
        printf("%d\n", s[r]-s[l-1]);
    }
    return 0;
}

二维前缀和

思路:通过不同长方形的加减获得矩形数组大小
在这里插入图片描述

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

const int N = 1010;
int n,m,q;
int a[N][N],s[N][N];

int main()
{
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1; i<=n; i++)
    {
        for(int j=1; j<=m; j++)
        {
            scanf("%d",&a[i][j]);
        }
    }
    for(int i=1; i<=n; i++)
    {
        for(int j=1; j<=m; j++)
        {
            s[i][j] = s[i-1][j] + s[i][j-1] + a[i][j] - s[i-1][j-1]; //求前缀和
        }
    }
    while(q--)
    {
        int x1,y1,x2,y2;//左上角与右下角
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        printf("%d\n",s[x2][y2] - s[x1-1][y2] - s[x2][y1-1] + s[x1-1][y1-1]);//求子矩阵和
    }
    return 0;
}

一维差分

实际上是前缀和的逆运算
用处:有b数组后可以用O(n)的时间得到a数组
在这里插入图片描述

#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
//构造差分数组
void insert(int l, int r, int c)
{
    b[l] += c;
    b[r + 1] -= c;
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
    for (int i = 1; i <= n; i ++ ) insert(i, i, a[i]);
    while (m -- )
    {
        int l, r, c;
        scanf("%d%d%d", &l, &r, &c);
        insert(l, r, c);
    }
    //对差分数组求一遍前缀和
    for (int i = 1; i <= n; i ++ ) b[i] += b[i - 1];
    for (int i = 1; i <= n; i ++ ) printf("%d ", b[i]);
    return 0;
}

二维差分

思路与二维前缀和类似,也是通过矩形论证

#include <iostream>

using namespace std;

const int N = 1010;

int n, m, q;
int a[N][N], b[N][N];

void insert(int x1, int y1, int x2, int y2, int c)
{
    b[x1][y1] += c;
    b[x2 + 1][y1] -= c;
    b[x1][y2 + 1] -= c;
    b[x2 + 1][y2 + 1] += c;
}

int main()
{
    scanf("%d%d%d", &n, &m, &q);

    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            scanf("%d", &a[i][j]);

    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            insert(i, j, i, j, a[i][j]);

    while (q -- )
    {
        int x1, y1, x2, y2, c;
        cin >> x1 >> y1 >> x2 >> y2 >> c;
        insert(x1, y1, x2, y2, c);
    }
	//求前缀和
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];

    for (int i = 1; i <= n; i ++ )
    {
        for (int j = 1; j <= m; j ++ ) printf("%d ", b[i][j]);
        puts("");
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网瘾中心呼唤爱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值