双指针算法——算法思路
时间复杂度:O(n)
双指针算法最核心思想是:
每一个指针在循环里总共移动次数不超过n次。把双重循环O(n^2)的暴力写法优化到O(n)。
习题一:最长连续不重复子序列
题目描述:给定一个长度为 n 的整数序列,请找出最长的不包含重复的数的连续区间,输出它的长度。
题目思路:
遍历数组a中的每一个元素a[i], 对于每一个i,找到j使得双指针[j, i]维护的是以a[i]结尾的最长连续不重复子序列,长度为i - j + 1, 将这一长度与r的较大者更新给r。
习题代码
#include <iostream>
using namespace std;
const int N = 100010;
int n;
int q[N], s[N];
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d", &q[i]);
int res = 0;
for (int i = 0, j = 0; i < n; i ++ )
{
s[q[i]] ++ ;
while (j < i && s[q[i]] > 1) s[q[j ++ ]] -- ;
res = max(res, i - j + 1);
}
cout << res << endl;
return 0;
}
习题二:数组元素的目标和
题目描述:给定两个升序排序的有序数组 A 和 B,以及一个目标值 x。数组下标从 0 开始。请你求出满足 A[i]+B[j]=x 的数对 (i,j)。数据保证有唯一解。
题目思路:i从 0开始 从前往后遍历,j从 m - 1开始 从后向前遍历
习题代码
#include <iostream>
#include <math.h>
using namespace std;
const int N = 100010;
int a[N],b[N];
int main()
{
int n,m,x;
cin>>n>>m>>x;//分别表示 A 的长度,B 的长度以及目标值 x。
for(int i=0; i<n; i++) scanf("%d",&a[i]);
for(int i=0; i<m; i++) scanf("%d",&b[i]);
for (int i = 0, j = m - 1; i < n; i ++)
{
while(j >= 0 && a[i] + b[j] > x) j --;
if(j >= 0 && a[i] + b[j] == x) printf("%d %d\n", i, j);
}
return 0;
}
习题三:判断子序列
题目描述:给定一个长度为 n 的整数序列 a1,a2,…,an 以及一个长度为 m 的整数序列 b1,b2,…,bm。
请你判断 a 序列是否为 b 序列的子序列。
子序列指序列的一部分项按原有次序排列而得的序列,例如序列 {a1,a3,a5} 是序列 {a1,a2,a3,a4,a5} 的一个子序列。
题目思路:
- j指针用来扫描整个b数组,i指针用来扫描a数组。若发现a[i]==b[j],则让i指针后移一位。
- 整个过程中,j指针不断后移,而i指针只有当匹配成功时才后移一位,若最后若i==n,则说明匹配成功。
习题代码
#include <iostream>
#include <math.h>
#include <algorithm>
using namespace std;
const int N = 100010;
int a[N],b[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=0; i<n; i++) scanf("%d",&a[i]);
for(int i=0; i<m; i++) scanf("%d",&b[i]);
int i = 0;
for(int j = 0; j < m; j++)
{
if(i < n && a[i] == b[j]) i++;
}
if(i == n) puts("Yes");
else puts("No");
return 0;
}