题目1:
704. 二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
class Solution {
public:
int search(vector<int>& nums, int target) {
int left=0;
int right=nums.size()-1;
while(left<=right)
{
int middle=left+(right-left)/2;
if(nums[middle]>target)
{
right=middle-1;
}
else if(nums[middle]<target)
{
left=middle+1;
}
else
{
return middle;
}
}
return -1;
}
};
题目2:
35. 搜索插入位置
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
示例 4:
输入: nums = [1,3,5,6], target = 0
输出: 0
示例 5:
输入: nums = [1], target = 0
输出: 0
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int left=0;
int right=nums.size()-1;
while(left<=right)
{
int middle=left+(right-left)/2;
if(nums[middle]>target)
{
right=middle-1;
}
else if(nums[middle]<target)
{
left=middle+1;
}
else{
return middle;
}
}
return right+1;
}
};
题目3:
367. 有效的完全平方数
给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
进阶:不要 使用任何内置的库函数,如 sqrt 。
示例 1:
输入:num = 16
输出:true
示例 2:
输入:num = 14
输出:false
class Solution {
public:
bool isPerfectSquare(int num) {
int left=0;
int right=num;
while(left<=right)
{
int middle=left+(right-left)/2;
if((long long)middle*middle>num)
{
right=middle-1;
}
else if((long long)middle*middle<num)
{
left=middle+1;
}
else
{
return true;
}
}
return false;
}
};
题目4:
69. x 的平方根
实现 int sqrt(int x) 函数。
计算并返回 x 的平方根,其中 x 是非负整数。
由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。
示例 1:
输入: 4
输出: 2
示例 2:
输入: 8
输出: 2
说明: 8 的平方根是 2.82842…,
由于返回类型是整数,小数部分将被舍去。
class Solution {
public:
int mySqrt(int x) {
if(x==0)
{
return 0;
}
int left=0;
int right=x;
int ans=-1;
while(left<=right)
{
int middle=left+(right-left)/2;
if((long long)middle*middle>x)
{
right=middle-1;
}
if((long long)middle*middle<=x)
{
ans=middle;
left=middle+1;
}
}
return ans;
}
};
题目5:
34. 在排序数组中查找元素的第一个和最后一个位置
给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
进阶:
你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
class Solution {
public:
int binarySearch(vector<int>&nums,int target,bool rows)
{
int left=0;
int right=nums.size()-1;
int ans=(int)nums.size();
while(left<=right)
{
int middle=left+(right-left)/2;
if(nums[middle]>target||rows&&nums[middle]>=target)
{
right=middle-1;
ans=middle;
}
else
{
left=middle+1;
}
}
return ans;
}
vector<int> searchRange(vector<int>& nums, int target) {
int left=binarySearch(nums,target,true);
int right=binarySearch(nums,target,false)-1;
if(left<=right&&nums[right]==target&&nums[left]==target&&right<nums.size())
{
return vector<int>{left,right};
}
return vector<int>{-1,-1};
}
};
题目6
59. 螺旋矩阵 II
给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。
示例 1:
输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]
示例 2:
输入:n = 1
输出:[[1]]
提示:
1 <= n <= 20
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>>result(n,vector<int>(n,0));
int startx=0,starty=0;
int edge=1;
int loop=n/2;
int mid=n/2;
int i,j;
int count=0;
while(loop--)
{
i=startx,j=starty;
for(j=starty;j<n-edge;j++)
{
count++;
result[i][j]=count;
}
for(i=startx;i<n-edge;i++)
{
count++;
result[i][j]=count;
}
for(;j>starty;j--)
{
count++;
result[i][j]=count;
}
for(;i>startx;i--)
{
count++;
result[i][j]=count;
}
startx++;
starty++;
edge++;
}
if(n%2)
{
result[mid][mid]=(count+1);
}
return result;
}
};
题目7
54. 螺旋矩阵
给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]
示例 2:
输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
输出:[1,2,3,4,8,12,11,10,9,5,6,7]
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 10
-100 <= matrix[i][j] <= 100
class Solution {
public:
vector<int> spiralOrder(vector<vector<int>>& matrix) {
if (matrix.size() == 0 || matrix[0].size() == 0) {
return {};
}
int rows = matrix.size(), columns = matrix[0].size();
vector<int> order;
int left = 0, right = columns - 1, top = 0, bottom = rows - 1;
while (left <= right && top <= bottom) {
for (int column = left; column <= right; column++) {
order.push_back(matrix[top][column]);
}
for (int row = top + 1; row <= bottom; row++) {
order.push_back(matrix[row][right]);
}
if (left < right && top < bottom) {
for (int column = right - 1; column > left; column--) {
order.push_back(matrix[bottom][column]);
}
for (int row = bottom; row > top; row--) {
order.push_back(matrix[row][left]);
}
}
left++;
right--;
top++;
bottom--;
}
return order;
}
};