二分查找题解

本文介绍了二分查找算法及其在不同场景下的应用,包括搜索目标值的下标、搜索插入位置、判断完全平方数、求平方根以及在螺旋矩阵中的查找。每个问题都给出了详细的解决方案,通过二分查找优化了时间复杂度,实现了高效的数据处理。
摘要由CSDN通过智能技术生成

题目1:

704. 二分查找

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left=0;
        int right=nums.size()-1;
        while(left<=right)
        {
            int middle=left+(right-left)/2;
            if(nums[middle]>target)
            {
                right=middle-1;
            }
           
            else if(nums[middle]<target)
            {
                left=middle+1;
            }
            else
            {
                return middle;
            }  
        }
        return -1;
    }
};

题目2:

35. 搜索插入位置

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4
示例 4:

输入: nums = [1,3,5,6], target = 0
输出: 0
示例 5:

输入: nums = [1], target = 0
输出: 0

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int left=0;
        int right=nums.size()-1;
        while(left<=right)
        {
            int middle=left+(right-left)/2;
            if(nums[middle]>target)
            {
                right=middle-1;
                
            }
            else if(nums[middle]<target)
            {
                left=middle+1;
            }
            else{
                return middle;
            }
        }
        return right+1;
    }
};

题目3:

367. 有效的完全平方数

给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。

进阶:不要 使用任何内置的库函数,如 sqrt 。

示例 1:

输入:num = 16
输出:true

示例 2:

输入:num = 14
输出:false

class Solution {
public:
    bool isPerfectSquare(int num) {
        int left=0;
        int right=num;
        while(left<=right)
        {
            int middle=left+(right-left)/2;
            if((long long)middle*middle>num)
            {
                 right=middle-1;
            }
            else if((long long)middle*middle<num)
            {
                left=middle+1;
            }
            else
            {
                return true;
            }
        }
        return false;
    }
};

题目4:

69. x 的平方根

实现 int sqrt(int x) 函数。

计算并返回 x 的平方根,其中 x 是非负整数。

由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。

示例 1:

输入: 4
输出: 2

示例 2:

输入: 8
输出: 2
说明: 8 的平方根是 2.82842…,
由于返回类型是整数,小数部分将被舍去。

class Solution {
public:
    int mySqrt(int x) {
        if(x==0)
        {
            return 0;
        }
        int left=0;
        int right=x;
        int ans=-1;
        while(left<=right)
        {
            int middle=left+(right-left)/2;
            if((long long)middle*middle>x)
            {
                right=middle-1;
            }
            if((long long)middle*middle<=x)
            {
                ans=middle;
                left=middle+1;
            }
        }
         return ans;
    }
};

题目5:

34. 在排序数组中查找元素的第一个和最后一个位置

给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]。

进阶:

你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

class Solution {
public:
    int binarySearch(vector<int>&nums,int target,bool rows)
    {
        int left=0;
        int right=nums.size()-1;
        int ans=(int)nums.size();
        while(left<=right)
        {
            int middle=left+(right-left)/2;
            if(nums[middle]>target||rows&&nums[middle]>=target)
            {
                right=middle-1;
                ans=middle;
            }
            else
            {
                left=middle+1;

            }
        }
        return ans;
    }
    vector<int> searchRange(vector<int>& nums, int target) {
        int left=binarySearch(nums,target,true);
        int right=binarySearch(nums,target,false)-1;
        if(left<=right&&nums[right]==target&&nums[left]==target&&right<nums.size())
        {
            return vector<int>{left,right};
        }
        return vector<int>{-1,-1};
    }
};

题目6

59. 螺旋矩阵 II

给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。

示例 1:
在这里插入图片描述

输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]
示例 2:

输入:n = 1
输出:[[1]]

提示:

1 <= n <= 20

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>>result(n,vector<int>(n,0));
        int startx=0,starty=0;
        int edge=1;
        int loop=n/2;
        int mid=n/2;
        int i,j;
        int count=0;
        while(loop--)
        {
            i=startx,j=starty;
            for(j=starty;j<n-edge;j++)
            {
                count++;
                result[i][j]=count;
                
            }
            for(i=startx;i<n-edge;i++)
            {
                count++;
                result[i][j]=count;
                
            }
            for(;j>starty;j--)
            {
                count++;
                result[i][j]=count;
               
            }
            for(;i>startx;i--)
            {
                count++;
                result[i][j]=count;
               
            }

            startx++;
            starty++;
            edge++;
        }
        if(n%2)
        {
            result[mid][mid]=(count+1);
        }
        return result;

    }
};

题目7

54. 螺旋矩阵

给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。

示例 1:
在这里插入图片描述

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]
示例 2:
在这里插入图片描述

输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
输出:[1,2,3,4,8,12,11,10,9,5,6,7]

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 10
-100 <= matrix[i][j] <= 100

class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        if (matrix.size() == 0 || matrix[0].size() == 0) {
            return {};
        }

        int rows = matrix.size(), columns = matrix[0].size();
        vector<int> order;
        int left = 0, right = columns - 1, top = 0, bottom = rows - 1;

        while (left <= right && top <= bottom) {
            for (int column = left; column <= right; column++) {
                order.push_back(matrix[top][column]);
            }
            for (int row = top + 1; row <= bottom; row++) {
                order.push_back(matrix[row][right]);
            }
            if (left < right && top < bottom) {
                for (int column = right - 1; column > left; column--) {
                    order.push_back(matrix[bottom][column]);
                }
                for (int row = bottom; row > top; row--) {
                    order.push_back(matrix[row][left]);
                }
            }
            left++;
            right--;
            top++;
            bottom--;
        }
        return order;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值