2022牛客寒假算法基础集训营4

A.R

思路

假设有一串包含 k k kR的字符串[l,r],其左右第一个PL,R,那么这一段的贡献则为 ( l − L ) ∗ ( R − r ) (l-L)*(R-r) (lL)(Rr),假设 L 1 L_1 L1,在 [ L 1 , R ] ( L 1 > L ) [L_1,R](L_1>L) [L1,R](L1>L)也存在满足条件的串,如果还是按照之前那个计算方法,则于前面会产生重复的串,那么我们可以只计算一个字符X对以它为结尾的串的影响 !

转移方程:

  • X = ′ P ′ , d p [ i ] = 0 X='P',dp[i]=0 X=P,dp[i]=0
  • X = ′ R ′ & & N u m R = = k , d p [ i ] = P [ i ] − R [ i ] X='R'\&\& Num_R==k ,dp[i]=P[i] - R[i] X=R&&NumR==k,dp[i]=P[i]R[i]
  • X = o t h e r , d p [ i ] = d p [ i − 1 ] X=other,dp[i]=dp[i-1] X=other,dp[i]=dp[i1]
代码
#include<bits/stdc++.h>
using  namespace std;
#define ll long long
const int maxn = 2e6 + 10;
char ch[maxn];
ll dp[maxn];
vector<int> R;
int main(){
    int n, k; cin >> n >> k;
    int lp = 0, lr = 0, sk = 0;
    for(int i = 1; i <= n; i++){
        cin >> ch[i];
        if(ch[i] == 'R')
            R.push_back(i);
    }
    ll res = 0;
    for(int i = 1; i <= n; i++){
        if(ch[i] == 'P') lp = i, lr += sk, sk = 0;
        else if(ch[i] == 'R'){
            sk++;
            if(sk == k){
                dp[i] = R[lr++] - lp;
                sk--;
            }
            else dp[i] = dp[i - 1];
        }
        else dp[i] = dp[i - 1];
        res += dp[i];
    }
    cout << res;
}

D.雪色光晕

思路

题意简化就是求点到线段的最短距离。

总的来说就是分为两种情况

  • 垂点在线段上:答案即三角形的高
  • 垂点不在线段上:答案即两个斜边中短的那一条

知识点:海伦公式

p = a + b + c 2 , s = p ∗ ( p − a ) ∗ ( p − b ) ∗ ( p − c ) p=\frac{a+b+c}{2},s=\sqrt{p*(p-a)*(p-b)*(p-c)} p=2a+b+c,s=p(pa)(pb)(pc)

代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll maxn = 2e5 + 10;
const double eps = 1e-8;
double min(double x, double y) { if (x - y > eps) x = y; return x; }
struct Dir {
	double x, y;
}dir[maxn], s, t;
int main() {
	int n; cin >> n;
	cin >> s.x >> s.y >> t.x >> t.y;
	for (int i = 1; i <= n; i++) cin >> dir[i].x >> dir[i].y;
	double res = 9999999999;
	for (int i = 0; i <= n; i++) {
		double x = s.x + dir[i].x, y = s.y + dir[i].y;
		double a = (s.x - x) * (s.x - x) + (s.y - y) * (s.y - y);
		double b = (s.x - t.x) * (s.x - t.x) + (s.y - t.y) * (s.y - t.y);
		double c = (t.x - x) * (t.x - x) + (t.y - y) * (t.y - y);
		if (b >= a + c || c >= a + b) {
			res = min(res, min(sqrt(b), sqrt(c)));
		}
		else {
			a = sqrt(a); b = sqrt(b); c = sqrt(c);
			double p = (a + b + c) / 2;
			double s = sqrt(p * (p - a) * (p - b) * (p - c));
			double h = s / a * 2;
			res = min(res, h);
		}
		s.x = x, s.y = y;
	}
	cout << fixed << setprecision(8) << res;
}

G.子序列权值乘积

思路

累积最大值、最小值对答案的贡献
如果我们把 x x x作为最小值,那么 x x x的贡献则为 x 2 n u m x^{2^{num}} x2num n u m num num为比 x x x大的数的数量,因为最小值为 x x x的子序列为 2 n u m 2^{num} 2num种(随便选一个大于等于 x x x作为子序列最大值)
比如序列[1,2,3,4],如果把1作为最小值,那么1参与的子序列有:[1,1]、[1,2]、[1,3]、[1,2,3]、[1,4]、[1,2,4]、[1,3,4]、[1,2,3,4]
但是答案是让求 m i n ∗ m a x min*max minmax,只需要求1的贡献有什么用啊?
因为res是对每一个子序列的 m i n ∗ m a x min*max minmax的积!(自己就读成和了
所以根据乘法的分配律,我们可以把所有的相同的min放到一起,相同的max放到一起,因此我们只需要统计 x x x作为最小值出现的次数即可!
最大值同理!

优化

上面思路的朴素做法是 ∏ x = 1 n q p o w ( a [ x ] , q p o w ( 2 , n − x ) ) \prod_{x=1}^nqpow(a[x],qpow(2,n-x)) x=1nqpow(a[x],qpow(2,nx)),我们可以优化一下。
对于一个数x,如果每多一个y( y ≥ x y \ge x yx)那么x出现的次数翻倍,我们可以通过这个性质,优化答案的累计过程
复杂度:O(n)

代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 2e5 + 10;
const ll mod = 1e9 + 7;
int arr[maxn];
int main(){
    int n; cin >> n;
    for(int i = 1; i <= n; i++) cin >> arr[i];
    sort(arr + 1, arr + 1 + n);
    ll res_min = 1, res_max = 1;
    for(int i = 1; i <= n; i++){
        res_min = res_min * res_min % mod * arr[i] % mod;
        res_max = res_max * res_max % mod * arr[n - i + 1] % mod;
    }
    cout << res_min * res_max % mod;
}


J.区间合数的最小公倍数

思路

首先要知道最大公因数最小公倍数在素因数角度的本质

lcm(a,b)a和b的素因数幂取max,比如9跟30, 9 = 3 3 , 30 = 2 ∗ 3 ∗ 5 9=3^3,30=2*3*5 9=33,30=235,所以 l c m ( 9 , 30 ) = 2 ∗ 3 3 ∗ 5 lcm(9,30)=2*3^3*5 lcm(9,30)=2335
gcd(a,b)a和b的素因数幂取min,比如9和30, 9 = 3 3 , 30 = 2 ∗ 3 ∗ 5 9=3^3,30=2*3*5 9=33,30=235,所以 g c d ( 9 , 30 ) = 3 gcd(9,30)=3 gcd(9,30)=3

知道这两条性质,那么这个题就显而易见了,求出所有和数的素因数,然后对各素数的幂取max。

代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 3e4 + 10;
const ll mod = 1e9 + 7;
bool vis[maxn + 10];
vector<int> prime;
int num[maxn];
void E() {
	for (int i = 2; i <= maxn; i++) {
		if (!vis[i]) prime.push_back(i);
		for (int j = 0; j < (int)prime.size() && i * prime[j] <= maxn; j++) {
			vis[i * prime[j]] = true;
			if (i % prime[j] == 0) break;
		}
	}
}
void solve(int x) {
	for (auto& te : prime) {
		int temp = 0;
		while (x % te == 0 && x) {
			x /= te;
			temp++;
		}
		num[te] = max(num[te], temp);
		if (!te) return;
	}
}
ll qpow(ll a, ll x) {
	ll res = 1;
	while (x) {
		if (x & 1) res = res * a % mod;
		a = a * a % mod;
		x >>= 1;
	}
	return res;
}
int main() {
	E();
	int l, r; cin >> l >> r;
	bool is = false;
	for (int i = l; i <= r; i++) {
		if (!vis[i]) continue;
		else is = true;
		solve(i);
	}
	if (!is) {
		cout << -1;
		return 0;
	}
	ll ans = 1;
	for (auto &te:prime) {
		(ans *= qpow(te, num[te])) %= mod;
	}
	cout << ans;
}

I.爆炸的符卡洋洋洒洒

思路

01背包变种:容量为K的背包变为容量的K的倍数的背包

容量为K通过取模来把他缩小到K的范围,如: a + b = n k a+b=nk a+b=nk,那么 a % k + b % k = k a\%k+b\%k=k a%k+b%k=k

因此转移方程为:
d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ ( j − a [ i ] % k + k ) % k ] + b [ i ] ) dp[i][j]=max(dp[i-1][j],dp[i-1][(j-a[i]\%k+k)\%k]+b[i]) dp[i][j]=max(dp[i1][j],dp[i1][(ja[i]%k+k)%k]+b[i])
按照习惯,我们接下来就是把二维dp压为一维,但是本题是压不了的。

因为取模操作,我们可能会对上一轮结果产生影响,比如我们 d p [ 10 ] = d p [ 7 ] + b [ 10 ] dp[10]=dp[7]+b[10] dp[10]=dp[7]+b[10],此时 d p [ 7 ] dp[7] dp[7]为选择第10个物品时的 d p [ 7 ] dp[7] dp[7],而不是选择第9个物品时的 d p [ 7 ] dp[7] dp[7],因此我们必须用二维来区分 i i i i − 1 i-1 i1

代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll dp[1010][1010], a[1010], b[1010];
int main() {
    int n, k; cin >> n >> k;
    for (int i = 1; i <= n; i++) {
        cin >> a[i] >> b[i];
        a[i] %= k;
    }
    memset(dp, 128, sizeof dp);
    dp[0][0] = 0;
    for (int i = 1; i <= n; i++) {
        for (int j = 0; j < k; j++) {
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][(j - a[i] + k) % k] + b[i]);
        }
    }
    if (dp[n][0] <= 0) dp[n][0] = -1;
    cout << dp[n][0];
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LOTRcsl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值