洛谷P2802 回家-最新题解

本文详细分析了洛谷P2802题目的解题思路,重点讲解了如何通过深度优先搜索(DFS)寻找小H从起点到终点的最短时间,并针对新增数据导致的TLE问题进行了剪枝优化。通过记录每个点是否走过以及走过时的血量状态,解决了重复路径的问题,确保在保证能量供给的情况下找到最短路径。代码示例分别展示了未优化和优化后的C++及Python解决方案。

洛谷P2802 回家-最新题解

写这篇题解的原因:水经验 洛谷方面增加了#11号数据,导致之前的题解代码都无法AC。

题目传送门
来看这个题解,应该都看过题了,下面水字数的粘贴可以直接跳过!

小H在一个划分成了n*m个方格的长方形封锁线上。 每次他能向上下左右四个方向移动一格(当然小H不可以静止不动),
但不能离开封锁线,否则就被打死了。 刚开始时他有满血6点,每移动一格他要消耗1点血量。一旦小H的 血量降到 0, 他将死去。
他可以沿路通过拾取鼠标(什么鬼。。。)来补满血量。只要他走到有鼠标的格子,他不需要任何时间即可拾取。格子上的鼠标可以瞬间补满,所以每次经过这个格子都有鼠标。就算到了某个有鼠标的格子才死去,
他也不能通过拾取鼠标补满 HP。 即使在家门口死去, 他也不能算完成任务回到家中。

地图上有 5 种格子:

数字 0: 障碍物。

数字 1: 空地, 小H可以自由行走。

数字 2: 小H出发点, 也是一片空地。

数字 3: 小H的家。

数字 4: 有鼠标在上面的空地。

小H能否安全回家?如果能, 最短需要多长时间呢?
输入格式
第一行两个整数n,m, 表示地图的大小为n*m。
下面 n 行, 每行 m 个数字来描述地图。
输出格式
一行, 若小H不能回家, 输出-1,否则输出他回家所需最短时间。
输入样例:
3 3
2 1 1
1 1 0
1 1 3
输出样例:
4

这个题呢…很常规的DFS。
遍历所有状态,找到“回家”的最短时间(路线)。
但…为了防止TLE,要进行剪枝,就是用一个bool或者你想用啥用啥,能够记录某个点是否使用过就可!避免重复性操作!

九十分代码:

#include<iostream>
#include<cstring>
using namespace std;

int n, m,ans=999999;//n,m是地图的范围,ans最优答案
int map[150][150],book[150][150];//map存储地图信息,book标记某点是否走过
int _next[4][2] = {
   
    {
   
   0,1},{
   
   1,0},{
   
   0,-1},{
   
   -1,0} };//存储往 上 下 左 右 走的坐标变化
#define min(x,y) (x>y?y:x)
void dfs(int hp, int i, int j, int _time)//hp 走到(i,j)点的血量 _time走到(i,j)点用的时间
{
   
   
	if (hp == 0 || map[i][j] == 0||book[i][j]) return;
	//如果hp=0,map[i][j]=0(出界或者该点为障碍物),book[i][j]==1 该点走过,返回
	if (map[i][j] == 3)//到家,更新ans
	{
   
   
		ans = min(ans, _time);
		return;
	}
	if (map[i][j] == 4) hp = 6;//捡到血包
	for (int z = 0; z < 4; z++) {
   
   //通过循环,实现上下左右移动
		book[i][j]
<think>嗯,用户想了解C语言中如何用动态规划解决3×n方格的骨牌铺法问题。首先,我得回忆一下骨牌铺法的常见问题形式。通常,这类问题属于递推或动态规划类型,可能涉及斐波那契数列或者其他递推关系。比如,引用中的几个例子都是处理类似的问题,但大部分是2×n的情况,比如引用4中的杭电oj题,用的是f(n)=f(n-1)+f(n-2),这和斐波那契很像。但用户的问题是关于3×n的,这可能需要不同的递推公式。 首先,我需要确认3×n的情况是否有不同的解法。根据已有的知识,2×n的情况确实是斐波那契数列,但3×n更复杂。例如,可能需要考虑更多的状态,比如垂直放置的骨牌和水平放置的组合,或者不同的填充模式。这时候可能需要找到递推关系,比如当n为奇数时可能无法铺满,所以结果为零,而当n为偶数时,可能有一个递推公式。 接下来,我需要查阅相关的递推公式是否正确。例如,当n为偶数时,递推式可能类似于f(n) = 4*f(n-2) - f(n-4),或者更复杂的组合。比如,在3×n的铺法中,每一步可能需要考虑不同的填补方式,从而形成递推关系。这时候需要验证这个公式是否正确,或者是否有其他可能的递推方式。 然后,考虑动态规划的实现步骤。动态规划通常需要一个数组来保存中间结果,避免重复计算。对于3×n的情况,初始条件可能为n=0时f(0)=1(空铺算一种),n=2时有3种铺法。之后,对于更大的偶数n,比如n=4,可能有11种铺法,依此类推。所以初始条件的设置很重要。 接下来,需要编写C语言代码的结构。根据用户提供的引用中的例子,比如引用1中的代码使用了记忆化递归,而引用3和4使用了迭代的动态规划方法。对于3×n的情况,可能需要类似的结构,但递推公式不同。例如,定义一个数组dp,其中dp[i]表示3×i方格的铺法数目。然后根据递推公式填充这个数组。 在实现过程中,需要注意数据类型的范围,因为当n较大时,数值可能会超过int的范围,所以应该使用long long类型。例如,引用3和4中的代码都使用了long long来存储结果,避免溢出。 另外,用户的问题中提到的例子都是针对2×n的情况,因此需要明确区分这两种情况的不同。可能需要解释为什么3×n的情况需要不同的递推关系,以及如何推导出这个关系。例如,可以通过分析小规模的例子(如n=2,4,6)来找出模式,然后推广到一般情况。 最后,需要确保代码的正确性,可以通过测试几个小的n值来验证结果是否符合预期。例如,当n=2时,输出3;n=4时,输出11;n=6时,输出41等,这些数值是否符合已知的递推结果。 总结一下,解决3×n骨牌铺法的动态规划步骤大致如下: 1. 确定递推关系式,可能需要查阅或推导数学公式。 2. 处理初始条件,比如n为0或2时的铺法数。 3. 使用数组存储中间结果,按递推公式填充。 4. 考虑数据类型的溢出问题,使用适当的数据类型。 5. 编写C语言代码实现上述逻辑,并进行测试验证。</think>### C语言实现3×n骨牌铺法的动态规划思路 #### 问题特征 对于$3×n$的骨牌铺法问题,当n为奇数时无法用2×1骨牌完全覆盖,结果为0;当n为偶数时,需要使用动态规划建立递推关系。该问题与斐波那契数列不同,需要更复杂的递推公式[^1][^4]。 #### 算法推导 1. **边界条件**: - $n=0$时视为1种铺法(空铺) - $n=2$时有3种铺法 2. **递推关系**: $$dp[i] = 4 \times dp[i-2] - dp[i-4] \quad (i \geq 4)$$ 该公式通过分析新增列组合方式得出[^1][^5] #### 代码实现 ```c #include <stdio.h> long long dominoTiling(int n) { if (n % 2 != 0) return 0; long long dp[n/2 + 1]; dp[0] = 1; // 3x0视为1种铺法 dp[1] = 3; // 3x2的情况 for (int i = 2; i <= n/2; i++) { dp[i] = 4 * dp[i-1] - dp[i-2]; } return dp[n/2]; } int main() { int n; scanf("%d", &n); printf("%lld\n", dominoTiling(n)); return 0; } ``` #### 关键点说明 - **数据类型**:使用`long long`防止数值溢出 - **空间优化**:只存储必要的历史值 - **递推验证**: - $n=4$时$dp[2] = 4×3 -1 = 11$ - $n=6$时$dp[3] = 4×11 -3 = 41$
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LOTRcsl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值