前言
不知道你在SpringBoot项目中,有没有遇到过下面这样的代码:
@GetMapping("/orders")
public List<Order> listOrders() {
return orderDao.findAll();
}
一次性查询了所有的订单,全表扫描50万数据,导致接口查询性能很差,严重的时候可能会导致OOM问题。
问题定位:
-
未分页查询
-
无缓存机制
-
未启用批量处理
这次事故让我明白:性能优化必须贯穿开发全流程。
第1招:连接池参数调优
问题场景:
默认配置导致连接池资源浪费,高并发时出现连接等待
错误配置:
spring:
datasource:
hikari:
maximum-pool-size: 1000
connection-timeout: 30000
数据库连接池的最大连接数,盲目设置过大,连接超时时间设置过长。
优化方案:
spring:
datasource:
hikari:
maximum-pool-size: ${CPU核心数*2} # 动态调整
minimum-idle: 5
connection-timeout: 3000 # 3秒超时
max-lifetime: 1800000 # 30分钟
idle-timeout: 600000 # 10分钟空闲释放
数据库连接池的最大连接数,改成根据CPU核心数动态调整。
将连接超时时间由30000,改成3000。
第2招:JVM内存优化
问题场景:
频繁Full GC导致服务卡顿
我们需要优化JVM参数。
启动参数优化:
java -jar -Xms4g -Xmx4g
-XX:NewRatio=1
-XX:+UseG1GC
-XX:MaxGCPauseMillis=200
-XX:InitiatingHeapOccupancyPercent=35
-XX:+AlwaysPreTouch
最大堆内存和初始堆内存都设置成了4G。
-XX:NewRatio=1,设置新生代和老年代各占一半。
垃圾收集器配置的是G1。
垃圾回收的最大停顿时间为200毫秒。
第3招:关闭无用组件
问题场景:
自动装配加载不需要的Bean
优化方案:
@SpringBootApplication(exclude = {
DataSourceAutoConfiguration.class,