POJ3417-Network(树上差分 + LCA)

这篇博客介绍了如何解决一个关于树形结构的问题,涉及的主要概念包括树的切割、主要边与附加边、最近公共祖先(LCA)和差分前缀和。通过广度优先搜索(BFS)求节点深度,利用倍增算法计算LCA,并使用差分数组处理附加边。最终目标是确定在切断主要边后,是否还能通过切割一条附加边将树进一步分割。代码实现包括BFS、DFS以及LCA和差分数组的应用。
摘要由CSDN通过智能技术生成

题目传送门:Network
题目大意:
给你一棵树, n - 1条主要边, m条附加边, 你的任务是切断这棵树, 即将这棵树分成两棵树. 因为结构是树, 所以无论你切割哪条主要边, 都会将这个数切断, 现在的问题是还需要在切割主要边的基础上再切割一条附加边(附加边只在切割主要边后起连接作用), 若仍然可以切断这棵树, 就认为你完成了任务.
方案1: 切割一条主要边, 若该主要边不被任何附加边覆盖, 那么下一步切割任意一条附加边都算完成任务.
方案2: 切割一条主要边, 若该条主要边仅被一条附加边覆盖, 那么只需切割该附加边即可完成任务.(若存在被两条及以上的附加边覆盖, 那无论下一步切割哪一条,都无力回天了, 只能gg ).
LCA的作用: 可以计算任意两节点路径上的权值和, 因为是树形结构, 所以任意两节点的路径是固定的, dis(x, y) = dis[x] + dis[y] - 2 * dis[LCA(x, y)], dis[]数组记录节点到根节点路径的权值和.
差分的作用: 差分前缀和是原序列, 在该题中我们可以用差分数组标记附加边覆盖主要边的信息, 具体操作为 cnt[x] + 1, cnt[y] + 1, cnt[LCA(x, y)] - 2, x到LCA(x, y)路径固定, y到LCA(x, y)的路径固定, 就相当于在两条序列上做差分运算.

两个最重要的框架已经就位了, 就只剩下如何组合了
首先用bfs求出树上每个节点的老子 爸爸以及每个节点的深度, 然后dfs求出附加边的树上差分前缀和, 之后的差分数组就是以该节点为根节点的子树的权值和, 即该节点到父节点被附加边覆盖的次数.因为题目中没有规定根节点, 所以可以任选一个节点当根节点.
代码如下 :

#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> P;
const int MAX_N = 2e5 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
//
//
int n, m, t, tot;
int cnt[MAX_N];
int f[MAX_N][30];
int head[MAX_N], d[MAX_N];
bool used[MAX_N];
struct node {int to, next;} G[MAX_N];
inline void add_edge(int u, int v) {
    ++ tot;
    G[tot].to = v;
    G[tot].next = head[u];
    head[u] = tot;
}
void bfs() {
    memset(d, 0, sizeof(d));
    queue<int> q;
    q.push(1);
    d[1] = 1;
    while(!q.empty()) {
        int p = q.front();
        q.pop();
        for(int i = head[p]; i != -1; i = G[i].next) {
            int u = G[i].to;
            if(d[u]) continue;//防止重复计算
            d[u] = d[p] + 1;
            f[u][0] = p;
            for(int j = 1; j <= t; ++ j) {
                //f[u][j]代表u向根节点的方向行走2^j距离所达到的节点, 俗称u的2^j级父亲
                //lca的核心代码, u的2^j级父亲, 等于u的2^(j-1)级父亲的2^(j-1)父亲
                f[u][j] = f[f[u][j - 1]][j - 1];
            }
            q.push(u);
        }
    }
}
void dfs(int x) {
    used[x] = true;
    for(int i = head[x]; i != -1; i = G[i].next) {
        int u = G[i].to;
        if(used[u]) continue;
        dfs(u);
        cnt[x] += cnt[u];
    }
}
int lca(int x, int y) {
    if(d[x] < d[y]) swap(x, y);
    //使x和y达到同一深度
    for(int i = t; i >= 0; -- i) {
        if(d[f[x][i]] >= d[y]) x = f[x][i];
    }
    if(x == y) return x;
    for(int i = t; i >= 0; -- i) {
        if(f[x][i] != f[y][i]) {
            x = f[x][i];
            y = f[y][i];
        }
    }
    return f[x][0];
}
void solve() {
    scanf("%d %d", &n, &m);
    memset(head, -1, sizeof(head));
    t = (int)(log(n) / log(2)) + 1;// lca采用的是倍增思想
    for(int i = 1; i < n; ++ i) {
        int u, v;
        scanf("%d %d", &u, &v);
        add_edge(u, v);
        add_edge(v, u);
    }
    bfs();
    for(int i = 1; i <= m; ++ i) {
        int u, v;
        scanf("%d %d", &u, &v);
        ++ cnt[u];
        ++ cnt[v];
        cnt[lca(u, v)] -= 2;
    }
    dfs(1);
    int ans = 0;
    for(int i = 2; i <= n; ++ i) {
        if(cnt[i] == 0) ans += m;
        if(cnt[i] == 1) ++ ans;
    }
    printf("%d\n", ans);
}
signed main() {
    int test = 1;
    //scanf("%d", &test);
    while(test -- ) {
        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值