Redis数据持久化方案

作为集中式缓存的优秀代表,Redis可以帮助我们在项目中完成很多特定的功能。Redis准确的说是一个非关系型数据库,但是由于其超高的并发处理性能,及其对于缓存场景所提供的一系列能力构建,使其成为了分布式系统中的集中缓存的绝佳选择。

数据持久化方案

除了容量有限之外,数据丢失无疑是存储在内存中的数据最大的风险点。

因为内存中的数据是非持久化存储的,一旦断电或者出现系统异常等情况,很容易导致内存数据丢失。所以大部分的系统里面都只是将内存型缓存用作数据库的辅助扛压,最终的数据存储在DB等可以持久化存储容器中,同步一份数据到缓存中用于并发场景下的业务使用。

在这里插入图片描述

这种组网场景下,Redis的数据其实是没有持久化的诉求的,因为Redis中数据仅仅是一份副本,最终数据在DB中都有。即使系统异常或者掉电重启,也可以基于数据库的数据进行缓存重建 —— 最多就是数据量特别巨大的时候,重建缓存的耗时会比较长。

另外一种场景,业务里面会有有些写操作会比较频繁、强依赖Redis特性来实现的功能,这部分数据不能丢、但又没有重要到必须每次更新都需要存入DB的地步。比如博客系统中的文章阅读量数据,文章每次被读取都需要更新阅读数,写操作非常频繁,如果阅读量存储到DB中,会导致DB压力较大,这种情况就希望可以将数据存储在内存中,然后内存数据可以持久化保存。
在这里插入图片描述

Redis提供了多种持久化方案,可以实现将内存数据定期存储到磁盘上,重启时候可以从磁盘加载到内存中,以此来避免数据的丢失。

RDB全量持久化模式

全量模式很好理解,就是定时将当前内存里面所有的key-value键值对内容,全部导出一份快照数据存储到磁盘上。这样下次如果需要使用的时候,就可以从磁盘上加载快照文件,实现内存数据的恢复

RDB全量模式持久化将数据写入磁盘的动作可以分为SAVE与BGSAVE两种。所谓BGSAVE就是background-save,也就是后台异步save,区别点在于SAVE是由Redis的命令执行线程按照普通命令的方式去执行操作,而BGSAVE是通过Fork出一个新的进程,在新的独立进程里面去执行save操作。

  • Fork的作用是复制一个与当前进程一样的进程。新进程的所有数据(变量、环境变量、程序计数器等) 数值都和原进程一致,但是是一个全新的进程,并作为原进程的子进程

  • 在Linux程序中,fork()会产生一个和父进程完全相同的子进程,但子进程在此后多会exec系统调用,出于效率考虑,Linux中引入了“写时复制技术

  • 一般情况父进程和子进程会共用同一段物理内存,只有进程空间的各段的内容要发生变化时,才会将父进程的内容复制一份给子进程。
    在这里插入图片描述

Redis的请求命令执行是通过单线程的方式执行的,所以要尽量避免耗时操作,而save动作需要将内存全部数据写入到磁盘上,对于redis而言,这一操作是非常耗时的,会阻塞住全部正常业务请求,所以save操作的触发只有两个场景:

  • 客户端手动发送save命令执行
  • Redis在shutdown的时候自动执行
    从数据保存完备性方面看,这两种方式都起不到自动持久化备份的能力,如果出现一些机器掉电等情况,是不会触发redis shutdown操作的,将面临数据丢失的风险。

相比而言,bgsave的杀伤力要小一些、适用度也更好一些,它可以保证在持久化期间Redis主进程可以继续处理业务请求。bgsave增加了过程中自动持久化操作的机制,触发条件更加的“智能”:

  • 客户端手动命令触发bgsave操作
  • Redis配置定时任务触发(支持间隔时间+变更数据量双重维度综合判断,达到任一条件则触发)

此外,在master-slave主从部署的场景中还支持仅由slave节点触发bgsave操作,来降低对master节点的影响。
值得注意的是,在fork子进程的时候需要将redis主进程中内存所有数据都复制一份到子进程中,所以bgsave操作实际上是将子进程内存中的数据快照导出到磁盘上,在执行期间对机器的剩余内存有较高要求,如果机器剩余内存不足,则可能导致fork的时候两份内存数据量超过机器物理内存大小,导致系统启用虚拟内存,拷贝速度大打折扣(虚拟内存本质上就是把磁盘当内存用,操作速度相比物理内存大大降低),会阻塞住Redis主进程的命令执行。

如果开启了RDB的bgsave定时触发执行机制,在出现异常掉电等情况,可能会丢失最后一部分尚未来及持久化的内容。在恢复的时候,Redis启动之后会先去读取RDB文件然后将其写入内存中恢复此前的缓存数据,数据恢复期间不受理外部业务请求。

优势

适合大规模的数据恢复、对数据完整性和一致性要求不高更适合使用、节省磁盘空间、恢复速度快

劣势

  1. Fork的时候,内存中的数据被克隆了一份,大致2倍的膨胀性需要考虑,

  2. 虽然Redis在fork时使用了写时拷贝技术,但是如果数据庞大时还是比较消耗性能。

  3. 在备份周期在一定间隔时间做一次备份,所以如果Redis意外down掉的话,就会丢失最后一次快照后的所有修改

AOF增量同步方式

RDB全量模式简单粗暴,直接将内存全量数据存储为快照序列化到本地。AOF(Append Only File)与RDB的思路不同,AOF更像是记录住Redis的每一次写请求执行命令,将每次执行的写操作命令记录存储到磁盘上,然后通过一种类似命令重放执行的方式,来实现数据的恢复。

AOF持久化流程

(1)客户端的请求写命令会被append追加到AOF缓冲区内;

(2)AOF缓冲区根据AOF持久化策略[always,everysec,no]将操作sync同步到磁盘的AOF文件中;

(3)AOF文件大小超过重写策略或手动重写时,会对AOF文件rewrite重写,压缩AOF文件容量;

(4)Redis服务重启时,会重新load加载AOF文件中的写操作达到数据恢复的目的

AOF具体实现的时候,包含几种不同的策略:
appendfsync always

可以简单的理解为每一条redis写请求执行的时候会触发一次磁盘写入操作,且只有在磁盘写入完成之后,请求的响应才会返回。这种方式可以保证AOF记录的准确性,但是会严重影响Redis的并发吞吐量。

appendfsync everysec

异步执行,任务执行线程执行命令后将命令写入任务放入队列中,由子线程异步方式每秒一次将执行命令分批写入文件中,相比always方式在异常情况下可能会丢失最后1s的执行记录,但可以大大降低对redis命令执行效率的影响。

appendfsync no

redis不控制落盘时间,由操作系统去决定什么时候该往磁盘flush,这种情况一般不推荐使用,无法准确掌控是否落盘,可靠性不够。

AOF的方式落盘持久化的时候,每次仅写入增量的部分,所以对系统整体运行期的影响较小,但随着系统在线运行时长的累加,AOF中存储的命令也越来越多,这样问题也随着出现:

  • AOF写入的方式类似与日志打印,将请求追加写入到磁盘文件中,文本文件未经过压缩,时间久了之后会占据大量磁盘空间,易造成磁盘满的问题。

  • 在需要从AOF文件回放重新构建缓存内容时,可能会耗时较久(相当于要将长期累积下来的写操作命令逐个重新执行一下)。

Rewrite压缩

AOF采用文件追加方式,文件会越来越大为避免出现此种情况,新增了重写机制, 当AOF文件的大小超过所设定的阈值时,Redis就会启动AOF文件的内容压缩, 只保留可以恢复数据的最小指令集.可以使用命令bgrewriteaof

重写原理

AOF文件持续增长而过大时,会fork出一条新进程来将文件重写(也是先写临时文件最后再rename),redis4.0版本后的重写,是指上就是把rdb 的快照,以二级制的形式附在新的aof头部,作为已有的历史数据,替换掉原来的流水账操作。

no-appendfsync-on-rewrite:

如果 no-appendfsync-on-rewrite=yes ,不写入aof文件只写入缓存,用户请求不会阻塞,但是在这段时间如果宕机会丢失这段时间的缓存数据。(降低数据安全性,提高性能)

如果 no-appendfsync-on-rewrite=no, 还是会把数据往磁盘里刷,但是遇到重写操作,可能会发生阻塞。(数据安全,但是性能降低)

触发机制,何时重写

Redis会记录上次重写时的AOF大小,默认配置是当AOF文件大小是上次rewrite后大小的一倍且文件大于64M时触发,重写虽然可以节约大量磁盘空间,减少恢复时间。但是每次重写还是有一定的负担的,因此设定Redis要满足一定条件才会进行重写。

auto-aof-rewrite-percentage:设置重写的基准值,文件达到100%时开始重写(文件是原来重写后文件的2倍时触发)
auto-aof-rewrite-min-size:设置重写的基准值,最小文件64MB。达到这个值开始重写。

例如:文件达到70MB开始重写,降到50MB,下次什么时候开始重写?100MB
系统载入时或者上次重写完毕时,Redis会记录此时AOF大小,设为base_size,如果Redis的AOF当前大小>= base_size +base_size*100% (默认)且当前大小>=64mb(默认)的情况下,Redis会对AOF进行重写。

重写流程

(1)bgrewriteaof触发重写,判断是否当前有bgsave或bgrewriteaof在运行,如果有,则等待该命令结束后再继续执行。

(2)主进程fork出子进程执行重写操作,保证主进程不会阻塞。

(3)子进程遍历redis内存中数据到临时文件,客户端的写请求同时写入aof_buf缓冲区和aof_rewrite_buf重写缓冲区保证原AOF文件完整以及新AOF文件生成期间的新的数据修改动作不会丢失。

(4)子进程写完新的AOF文件后,向主进程发信号,父进程更新统计信息;主进程把aof_rewrite_buf中的数据写入到新的AOF文件。

(5)使用新的AOF文件覆盖旧的AOF文件,完成AOF重写。
在这里插入图片描述

优势

  • 备份机制更稳健,丢失数据概率更低。

  • 可读的日志文本,通过操作AOF稳健,可以处理误操作。

劣势

比起RDB占用更多的磁盘空间。恢复备份速度要慢。 每次读写都同步的话,有一定的性能压力。存在个别Bug,造成恢复不能。

RDB与AOF混合使用

RDB在过程中每次写磁盘的时候对Redis业务处理的性能影响较大,但是从磁盘加载到内存重建缓存的时候效率很高。

AOF通过增量的方式降低了运行过程中对Redis业务处理的影响,但是命令回放重建缓存的时候效率较差。
如果将两者结合起来使用,是否可以取长补短呢?事实似乎的确如此。从4.0版本开始,Redis支持了RDB + AOF的混合持久化方式,通过rewrite机制来实现。需要在redis的配置文件中开启对应开关:

aof-use-rdb-preamble yes

开启之后,redis在每次执行aof操作的时候会判断下是否达到了触发rewrite的条件,如果达到,则fork出一个新的子进程进行RDB操作将当前时刻全量内存数据生成RDB数据然后写入到AOF文件中,而后续的写操作命令则继续append方式追加记录到AOF文件中。这样一来AOF文件实际上由两部分内容组成。如下图所示:

通过RDB + AOF混合的策略,很好的实现了两者的优势互补:

  • 先通过AOF的方式记录命令,达到门槛的时候才执行rewrite操作生成RDB,最大限度降低了RDB执行频率,降低了对redis业务命令处理过程的影响。

  • 通过RDB的方式替代了前期大量的AOF命令存储,有效的降低了磁盘占用。

  • 通过RDB(恢复数据快) + AOF(解决RDB部分数据丢失问题)的方式,系统重建缓存的时候,先加载RDB文件完成主体数据的重建,然后在此基础上重放AOF增量命令,大大降低了启动时AOF重放的耗时。

两种策略同时开启

AOF和RDB同时开启,系统默认取AOF的数据(数据不会存在丢失)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芝士汉堡 ིྀིྀ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值