基数排序.

基数排序(桶排序)介绍:

1)基数排序(radixsort)属于"分配式排序"(distribution sort),又称"桶子法"(bucket sort)或 bin sort,顾名思义,它是通过关键值的各个位的值,将要排序的元素分配至某些"桶"中,达到排序的作用.
2.基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
3.基数排序(Radix Sort)是桶排序的扩展
4,基数排序是1887年赫尔曼,何乐礼发明的,他是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较.

基数排序的基本思想

1,将所有带比较数值同样为同样的数位长度,数位较短的数前面补零,然后,从最低位开始,依次进行排序,这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列.

图文解释

将数组{53,3,542,748,14,214}使用基数排序,进行升序排序

  • 数组的初始状态{53,3,542,748,14,214}
  • 第一轮排序:
    • 将每个原始的个位取出,然后看这个数应该放在哪个对应的桶(一个一位数组)
    • 按照这个桶的顺序(一维数组的下标)依次取出数据,放入到原来的数组.
    • 数组第一轮排序arr={542,53,3,14,214,748}
      *在这里插入图片描述
    • 第二轮排序
    • 将每个元素的十位取出,然后看这个数应该放在哪个对应的桶(一个以维数组)
    • 按照这个桶的顺序(一维数组的下标)依次取出数据,在重写放回arr
    • 第二轮排序结果{3,14,214,542,748,53}在这里插入图片描述
  • 第三轮排序
    • 将每个元素的百位取出,然后看这个数应该放在哪个对应的桶(一个以维数组)
    • 按照这个桶的顺序(一维数组的下标)依次取出数据,在重写放回arr
    • 第三轮的排序结果{3,14,53,214,542,748}
      在这里插入图片描述

代码实现

排序的次数:我们总共排序多少轮,我们看的是最大的数有多少位-1位,最大的位数是1234,那么排序三次,是321123那么排序5次数

代码逐步求解过程
package sort;

import java.util.Arrays;

public class RadixSort {
    public static void main(String[] args) {
        int[] arr={53,3,542,748,14,214};
        radixSort(arr);
    }

    //基数排序方法
    public static void radixSort(int[] arr){
        //第一轮(针对每个原始的个位进行排序处理



        // 定义一个二维数组,表示十个桶,每个桶就是一个以维数组
        //说明一把,这个二维数组包含十个一维数组,
        //为了防止在放入数的时候,数据溢出,则每个以为数组(桶),大小定位arr.length空间换时间)
        //很明确,基数排序是空间换时间的金典算法
        int[][] bucket =new int[10][arr.length];

        //为了记录每个桶中实际存放了多少数据,我们定义一个一维数组来记录各个桶每次放入的数据个数
        //可以这样理解
        //bucketElementCounts[0]记录的就是bucket[0]桶放入数据的个数
        int[] bucketElementCounts=new int[10];


        //第一轮(针对每个原始的个位进行排序处理)
        for (int j=0;j<arr.length;j++){
            //取出每个元素的个位
            int digitOfElement=arr[j]%10;
            //放入到对应的桶中
            bucket[digitOfElement][bucketElementCounts[digitOfElement]]=arr[j];
            //这里为什么++,以内万一这个桶还有其他元素放进来,不能让他覆盖,而后放到下一位.
            bucketElementCounts[digitOfElement]++;
        }

        //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
        int index=0;
        //遍历每一个桶,并将桶中的数据,放入到原数组
        for(int k=0;k<bucketElementCounts.length;k++){
            //如果桶中有数据,我们才放入到原来的数组
            if(bucketElementCounts[k]!=0){
                //循环该桶即第k个桶(即第k个一位数组),放入
                for(int l=0;l<bucketElementCounts[k];l++){
                    //取出元素放入到arr
                    arr[index++]=bucket[k][l];

                }
            }
            //第一轮以后我们的桶中的数量清零,即每个bucketElementCounts[k]=0;
            bucketElementCounts[k]=0;
        }
        System.out.println("第一轮结果对个位的排序处理以后:"+ Arrays.toString(arr));

 //========================================================
        //第二轮(针对每个原始的个十位进行排序处理)
        for (int j=0;j<arr.length;j++){
            //取出每个元素的个位
            int digitOfElement=arr[j]/10%10;
            //放入到对应的桶中
            bucket[digitOfElement][bucketElementCounts[digitOfElement]]=arr[j];
            //这里为什么++,以内万一这个桶还有其他元素放进来,不能让他覆盖,而后放到下一位.
            bucketElementCounts[digitOfElement]++;
        }

        //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
         index=0;
        //遍历每一个桶,并将桶中的数据,放入到原数组
        for(int k=0;k<bucketElementCounts.length;k++){
            //如果桶中有数据,我们才放入到原来的数组
            if(bucketElementCounts[k]!=0){
                //循环该桶即第k个桶(即第k个一位数组),放入
                for(int l=0;l<bucketElementCounts[k];l++){
                    //取出元素放入到arr
                    arr[index]=bucket[k][l];
                    index++;

                }
            }
            //第二轮以后我们的桶中的数量清零,即每个bucketElementCounts[k]=0;
            bucketElementCounts[k]=0;
        }
        System.out.println("第二轮结果对个位的排序处理以后:"+ Arrays.toString(arr));


        //====================================================
        //第三轮(针对每个原始的百位进行排序处理)
        for (int j=0;j<arr.length;j++){
            //取出每个元素的个位
            int digitOfElement=arr[j]/100%10;
            //放入到对应的桶中
            bucket[digitOfElement][bucketElementCounts[digitOfElement]]=arr[j];
            //这里为什么++,以内万一这个桶还有其他元素放进来,不能让他覆盖,而后放到下一位.
            bucketElementCounts[digitOfElement]++;
        }

        //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
        index=0;
        //遍历每一个桶,并将桶中的数据,放入到原数组
        for(int k=0;k<bucketElementCounts.length;k++){
            //如果桶中有数据,我们才放入到原来的数组
            if(bucketElementCounts[k]!=0){
                //循环该桶即第k个桶(即第k个一位数组),放入
                for(int l=0;l<bucketElementCounts[k];l++){
                    //取出元素放入到arr
                    arr[index]=bucket[k][l];
                    index++;

                }
            }
            //第二轮以后我们的桶中的数量清零,即每个bucketElementCounts[k]=0;
            bucketElementCounts[k]=0;
        }
        System.out.println("第三轮结果对个位的排序处理以后:"+ Arrays.toString(arr));

    }



}


RadixSort

package sort;

import java.util.Arrays;

public class RadixSort {
    public static void main(String[] args) {
        int[] arr={53,3,542,748,14,214};
        radixSort(arr);
          //基数排序的速度测试,可以试试8000000,我们可以看出内存不足,典型的空间换时间.
        int[] arr2=new int[800000];
        for (int i=0;i<800000;i++){
            arr2[i]=(int)(Math.random()*400000);//生成一个[0,20000)的随机整数
        }
        long startTime=System.currentTimeMillis();
        radixSort(arr2);
        long endTime=System.currentTimeMillis();
        System.out.println("排序用的时间:"+(endTime-startTime));

    }

    //基数排序方法
    public static void radixSort(int[] arr){
        //根据推到过程,我们可以得到基数排序的代码
        //先得到数组中最大数的位数
        int max=arr[0];//假设第一个数就是最大数
        for(int i=0;i<arr.length;i++){
            if(arr[i]>max){
                max=arr[i];
            }
        }
        //得到最大位是几位数
        int maxLength=(max+"").length();

        // 定义一个二维数组,表示十个桶,每个桶就是一个以维数组
        //说明一把,这个二维数组包含十个一维数组,
        //为了防止在放入数的时候,数据溢出,则每个以为数组(桶),大小定位arr.length空间换时间)
        //很明确,基数排序是空间换时间的金典算法
        int[][] bucket =new int[10][arr.length];

        //为了记录每个桶中实际存放了多少数据,我们定义一个一维数组来记录各个桶每次放入的数据个数
        //可以这样理解
        //bucketElementCounts[0]记录的就是bucket[0]桶放入数据的个数
        int[] bucketElementCounts=new int[10];

        //这里我们使用循环将代码处理
        for(int i=0,n=1;i<maxLength;i++,n*=10){
            //针对每个元素对应的为排序(第一次是个位,第二次是十位,一次类推
            // )
            for (int j=0;j<arr.length;j++){
                //取出每个元素的个位
                int digitOfElement=arr[j]/n%10;
                //放入到对应的桶中
                bucket[digitOfElement][bucketElementCounts[digitOfElement]]=arr[j];
                //这里为什么++,以内万一这个桶还有其他元素放进来,不能让他覆盖,而后放到下一位.
                bucketElementCounts[digitOfElement]++;
            }

            //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
            int index=0;
            //遍历每一个桶,并将桶中的数据,放入到原数组
            for(int k=0;k<bucketElementCounts.length;k++){
                //如果桶中有数据,我们才放入到原来的数组
                if(bucketElementCounts[k]!=0){
                    //循环该桶即第k个桶(即第k个一位数组),放入
                    for(int l=0;l<bucketElementCounts[k];l++){
                        //取出元素放入到arr
                        arr[index++]=bucket[k][l];

                    }
                }
                //第i轮以后我们的桶中的数量清零,即每个bucketElementCounts[k]=0;
                bucketElementCounts[k]=0;
            }
            System.out.println("第"+(i+1)+"轮排序处理以后:"+ Arrays.toString(arr));

        }


基数排序是一个典型的空间换时间的案例.我们我们对8000000万个数据进行排序,

基数排序的说

1.基数排序是对传统桶排序的扩展,速度很快
2,基数排序是经典的空间换时间的方式,占用内存很大,当对海量的数据进行排序时,容易造成OutOfMemorError错误.
3,基数排序时稳定[注:假定在待排序的记录列中,存在多个具有相同的关键字的记录,若进过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而且排序后的序列中,r[i]仍在r[j]之前],则成为这种排序算法是稳定的,否则称为不稳定的
4.有负数的数组中,我们不用基数排序来进行排序,如果支持负数,参考:https;//code.i-harness.com/zh-CN/q/e98fa9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galaxy@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值