https://download.pytorch.org/whl/torch_stable.html
NVIDIA
pychram 安装
安 装 流 程
先查看cuda 和cudnn 的对应版本
https://developer.nvidia.com/rdp/cudnn-download
手动将 cudnn 中的bin include lib 下的文件移动到cuda 下的bin include lib 文件夹下面
cuda 默认路径 : C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6
进入C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\extras\demo_suite 中 运行deviceQuery.exe
1.安装cuda(找跟NVIDIA驱动匹配版本) *尽量新的版本
2.安装相应的cudnn(登录找相应版本)windows
3.安装python(创建虚拟环境) *尽量老的版本 3.7
conda create -n env_name python=x.x
安装错误需要删除的命令
conda remove -n your_env_name --all
4.安装torch
https://download.pytorch.org/whl/torch_stable.html
显示 I successfully installed torch-1.12.0+cu113 torchaudio-0.12.0+cu113 torchvision-0.13.0+cu113
5.安装torchvision
matplotlib==3.6.2 numpy==1.23.5 Pillow==9.3.0 tqdm==4.64.1 wandb==0.13.5