当函数需要返回一批相同类型的数据时,可考虑数组返回。

1.基本原理:当把整个数组作为函数的实参的时候,不同于普通变量作函数实参。对比如下:
普通变量(包括数组的单个元素):
#include
using namespace std;
int max(int a,int b); //函数声明
int main( )
{
int A,B,C;
cin>>A>>B;
C=max(A,B);
//普通变量作为函数参数,只是值传递,把一个值从实参内存空间传递到形参申请的内存空间
cout<<“两个数中较大的为:”<<C<<endl;
return 0;
}
int max(int a,int b) //函数定义
{
if(a>b)
{
return a;
}
else
{
return b;
}
}

整个数组作函数参数(以求两个一维向量相加为例):
(我们看整段代码,利用了整个数组作为函数参数的方法,实现了一个向量相加的函数。
但是,如果我们细心点,会发现,按一般变量作为函数参数的值传递方法,是没办法通过函数体中的“C[i]=A[i]+B[i]”语句实现对主调函数中的c[2]进行修改的。换句话说,在传统的值传递里,形参不能修改实参。
所以,我们可以确定,当整个数组作为函数参数时,形参和实参操作的是同一个内存空间。因此,我们要批量返回一类数据时,可以通过数组传递,借助数组接口,把被调函数的操作作用于主调函数的对应区域。)
#include
using namespace std;
void add(int A[ ],int B[ ],int n,int C[ ]);
int main( )
{
int a[2]={1,2};
int b[2]={3,4};
int c[2];
c[2]=add(a,b,2,c);
cout<<“a+b=(”;
for(int i=0;i<2;i++)
{
cout<<c[i];
}
cout<<")";
}
void add(int A[ ],int B[ ],int n,int C[ ])
//这里n的作用是,表示数组长度,以便于控制函数体中的循环次数
//而数组C则是用来接收A+B的,并且起到了联系被调函数和主调函数的作用。
{
for(int i=0;i<n;i++)
{
C[i]=A[i]+B[i];
}
return ;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值