弗洛伊德算法是用来求两个顶点间的最短路径的,它的主要思想是引入中间点,通过比较目标两个点通过中间点连接起来的距离和直接将两个目标点连接起来的距离来确定是否引入中间点,而这个中间点可能不只有一个,有可能有两个,有三个,有n个,先拿中间点只有一个来举例子
for(i=1;i<=n;i++) {
for(j=1;j<=n;j++) {
if(e[i][j]>e[i][1]+e[1][j])
e[i][j]=e[i][1]+e[1][j];
}
}
这段代码就是在说如果从i到j之间的路程大于从i到1号顶点加上从1号顶点到j之间的距离,这时就更新e[i][j],e[i][j]存的是两个目标i顶点间的最短距离
接下来就是只允许通过1,2号顶点的情况下任意两点间的最短路程
for(i=1;i<=n;i++) {
for(j=1;j<=n;j++) {
if(e[i][j]>e[i][1]+e[1][j])
e[i][j]=e[i][1]+e[1][j];
}
}
for(i=1;i<=n;i++) {
for(j=1;j<=n;j++) {
if(e[i][j]>e[i][2]+e[2][j])
e[i][j]=e[i][2]+e[2][j];
}
}
所以就是个循环嵌套的问题,将代码整合成下面这样,这段代码也用到了动态规划的思想,维护当前路径的最小值,这样最后就能找到全部的最小值
for (k = 1; k <= n; k++)
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (e[i][j] > e[i][k] + e[k][j])
e[i][j] = e[i][k] + e[k][j];
接下来就是完整代码
#include<stdio.h>
int main(void) {
int m, n,i,j;
int inf = 99999;
scanf("%d %d", &n, &m);
int e[100][100];
//数组初始化
for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {
if (i == j) e[i][j] = 0;
else e[i][j] = inf;
}
}
int t1, t2, t3;//两个顶点,一个权
for (i = 1; i <= m; i++) {
scanf("%d %d %d", &t1, &t2, &t3);
e[t1][t2] = t3;
}
int k;
//这段代码的思想就是最开始只允许经过1号顶点进行中转,接下来是只允许经过1,2号顶点进行中转
//最后一直到只允许经过前n个顶点进行中转
for (k = 1; k <= n; k++)
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
//e[i][j]指的是从i号顶点到j号顶点之间的路程
//e[i][k]+e[k][j]指的是从i号顶点先到k号顶点再从k号顶点到j号顶点的距离
if (e[i][j] > e[i][k] + e[k][j])
e[i][j] = e[i][k] + e[k][j];
for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {
printf("%10d ", e[i][j]);
}
printf("\n");
}
return 0;
}
测试点信息如下: